Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: mierle@gmail.com (Keir Mierle) |
| 30 | // sameeragarwal@google.com (Sameer Agarwal) |
| 31 | // thadh@gmail.com (Thad Hughes) |
| 32 | // |
| 33 | // This autodiff implementation differs from the one found in |
| 34 | // autodiff_cost_function.h by supporting autodiff on cost functions with |
| 35 | // variable numbers of parameters with variable sizes. With the other |
| 36 | // implementation, all the sizes (both the number of parameter blocks and the |
| 37 | // size of each block) must be fixed at compile time. |
| 38 | // |
| 39 | // The functor API differs slightly from the API for fixed size autodiff; the |
| 40 | // expected interface for the cost functors is: |
| 41 | // |
| 42 | // struct MyCostFunctor { |
| 43 | // template<typename T> |
Sameer Agarwal | efb47f3 | 2013-02-14 19:44:11 -0800 | [diff] [blame] | 44 | // bool operator()(T const* const* parameters, T* residuals) const { |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 45 | // // Use parameters[i] to access the i'th parameter block. |
| 46 | // } |
| 47 | // } |
| 48 | // |
| 49 | // Since the sizing of the parameters is done at runtime, you must also specify |
| 50 | // the sizes after creating the dynamic autodiff cost function. For example: |
| 51 | // |
| 52 | // DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| 53 | // new MyCostFunctor()); |
| 54 | // cost_function.AddParameterBlock(5); |
| 55 | // cost_function.AddParameterBlock(10); |
| 56 | // cost_function.SetNumResiduals(21); |
| 57 | // |
| 58 | // Under the hood, the implementation evaluates the cost function multiple |
| 59 | // times, computing a small set of the derivatives (four by default, controlled |
| 60 | // by the Stride template parameter) with each pass. There is a tradeoff with |
| 61 | // the size of the passes; you may want to experiment with the stride. |
| 62 | |
| 63 | #ifndef CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_ |
| 64 | #define CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_ |
| 65 | |
| 66 | #include <cmath> |
| 67 | #include <numeric> |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 68 | #include <vector> |
| 69 | |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 70 | #include "ceres/cost_function.h" |
| 71 | #include "ceres/internal/scoped_ptr.h" |
| 72 | #include "ceres/jet.h" |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 73 | #include "glog/logging.h" |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 74 | |
| 75 | namespace ceres { |
| 76 | |
| 77 | template <typename CostFunctor, int Stride = 4> |
| 78 | class DynamicAutoDiffCostFunction : public CostFunction { |
| 79 | public: |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 80 | explicit DynamicAutoDiffCostFunction(CostFunctor* functor) |
Sameer Agarwal | 931c309 | 2013-02-25 09:46:21 -0800 | [diff] [blame] | 81 | : functor_(functor) {} |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 82 | |
| 83 | virtual ~DynamicAutoDiffCostFunction() {} |
| 84 | |
| 85 | void AddParameterBlock(int size) { |
| 86 | mutable_parameter_block_sizes()->push_back(size); |
| 87 | } |
| 88 | |
| 89 | void SetNumResiduals(int num_residuals) { |
| 90 | set_num_residuals(num_residuals); |
| 91 | } |
| 92 | |
| 93 | virtual bool Evaluate(double const* const* parameters, |
| 94 | double* residuals, |
| 95 | double** jacobians) const { |
| 96 | CHECK_GT(num_residuals(), 0) |
| 97 | << "You must call DynamicAutoDiffCostFunction::SetNumResiduals() " |
| 98 | << "before DynamicAutoDiffCostFunction::Evaluate()."; |
| 99 | |
| 100 | if (jacobians == NULL) { |
| 101 | return (*functor_)(parameters, residuals); |
| 102 | } |
| 103 | |
| 104 | // The difficulty with Jets, as implemented in Ceres, is that they were |
| 105 | // originally designed for strictly compile-sized use. At this point, there |
| 106 | // is a large body of code that assumes inside a cost functor it is |
| 107 | // acceptable to do e.g. T(1.5) and get an appropriately sized jet back. |
| 108 | // |
| 109 | // Unfortunately, it is impossible to communicate the expected size of a |
| 110 | // dynamically sized jet to the static instantiations that existing code |
| 111 | // depends on. |
| 112 | // |
| 113 | // To work around this issue, the solution here is to evaluate the |
| 114 | // jacobians in a series of passes, each one computing Stripe * |
| 115 | // num_residuals() derivatives. This is done with small, fixed-size jets. |
| 116 | const int num_parameter_blocks = parameter_block_sizes().size(); |
| 117 | const int num_parameters = std::accumulate(parameter_block_sizes().begin(), |
| 118 | parameter_block_sizes().end(), |
| 119 | 0); |
| 120 | |
| 121 | // Allocate scratch space for the strided evaluation. |
| 122 | vector<Jet<double, Stride> > input_jets(num_parameters); |
| 123 | vector<Jet<double, Stride> > output_jets(num_residuals()); |
| 124 | |
| 125 | // Make the parameter pack that is sent to the functor (reused). |
Sameer Agarwal | 974513a | 2013-02-12 14:22:40 -0800 | [diff] [blame] | 126 | vector<Jet<double, Stride>* > jet_parameters(num_parameter_blocks, NULL); |
| 127 | int num_active_parameters = 0; |
| 128 | int start_derivative_section = -1; |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 129 | for (int i = 0, parameter_cursor = 0; i < num_parameter_blocks; ++i) { |
| 130 | jet_parameters[i] = &input_jets[parameter_cursor]; |
Sameer Agarwal | 974513a | 2013-02-12 14:22:40 -0800 | [diff] [blame] | 131 | |
| 132 | const int parameter_block_size = parameter_block_sizes()[i]; |
| 133 | if (jacobians[i] != NULL) { |
| 134 | start_derivative_section = |
| 135 | (start_derivative_section == -1) |
| 136 | ? parameter_cursor |
| 137 | : start_derivative_section; |
| 138 | num_active_parameters += parameter_block_size; |
| 139 | } |
| 140 | |
| 141 | for (int j = 0; j < parameter_block_size; ++j, parameter_cursor++) { |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 142 | input_jets[parameter_cursor].a = parameters[i][j]; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | // Evaluate all of the strides. Each stride is a chunk of the derivative to |
| 147 | // evaluate, typically some size proportional to the size of the SIMD |
| 148 | // registers of the CPU. |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 149 | int num_strides = static_cast<int>(ceil(num_active_parameters / |
| 150 | static_cast<float>(Stride))); |
| 151 | |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 152 | for (int pass = 0; pass < num_strides; ++pass) { |
Sameer Agarwal | 974513a | 2013-02-12 14:22:40 -0800 | [diff] [blame] | 153 | // Set most of the jet components to zero, except for |
| 154 | // non-constant #Stride parameters. |
| 155 | int active_parameter_count = 0; |
| 156 | int end_derivative_section = start_derivative_section; |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 157 | for (int i = 0, parameter_cursor = 0; i < num_parameter_blocks; ++i) { |
| 158 | for (int j = 0; j < parameter_block_sizes()[i]; |
| 159 | ++j, parameter_cursor++) { |
| 160 | input_jets[parameter_cursor].v.setZero(); |
| 161 | if (parameter_cursor >= start_derivative_section && |
Sameer Agarwal | 974513a | 2013-02-12 14:22:40 -0800 | [diff] [blame] | 162 | active_parameter_count < Stride) { |
| 163 | if (jacobians[i] != NULL) { |
| 164 | input_jets[parameter_cursor] |
| 165 | .v[parameter_cursor - start_derivative_section] = 1.0; |
| 166 | ++active_parameter_count; |
| 167 | } |
| 168 | ++end_derivative_section; |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 169 | } |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | if (!(*functor_)(&jet_parameters[0], &output_jets[0])) { |
| 174 | return false; |
| 175 | } |
| 176 | |
| 177 | // Copy the pieces of the jacobians into their final place. |
Sameer Agarwal | 974513a | 2013-02-12 14:22:40 -0800 | [diff] [blame] | 178 | active_parameter_count = 0; |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 179 | for (int i = 0, parameter_cursor = 0; i < num_parameter_blocks; ++i) { |
| 180 | for (int j = 0; j < parameter_block_sizes()[i]; |
| 181 | ++j, parameter_cursor++) { |
| 182 | if (parameter_cursor >= start_derivative_section && |
Sameer Agarwal | 974513a | 2013-02-12 14:22:40 -0800 | [diff] [blame] | 183 | active_parameter_count < Stride) { |
| 184 | if (jacobians[i] != NULL) { |
| 185 | for (int k = 0; k < num_residuals(); ++k) { |
| 186 | jacobians[i][k * parameter_block_sizes()[i] + j] = |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 187 | output_jets[k].v[parameter_cursor - |
| 188 | start_derivative_section]; |
Sameer Agarwal | 974513a | 2013-02-12 14:22:40 -0800 | [diff] [blame] | 189 | } |
| 190 | ++active_parameter_count; |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 191 | } |
| 192 | } |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | // Only copy the residuals over once (even though we compute them on |
| 197 | // every loop). |
| 198 | if (pass == num_strides - 1) { |
| 199 | for (int k = 0; k < num_residuals(); ++k) { |
| 200 | residuals[k] = output_jets[k].a; |
| 201 | } |
| 202 | } |
Sameer Agarwal | 974513a | 2013-02-12 14:22:40 -0800 | [diff] [blame] | 203 | |
| 204 | start_derivative_section = end_derivative_section; |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 205 | } |
| 206 | return true; |
| 207 | } |
| 208 | |
| 209 | private: |
| 210 | internal::scoped_ptr<CostFunctor> functor_; |
| 211 | }; |
| 212 | |
| 213 | } // namespace ceres |
| 214 | |
| 215 | #endif // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_ |