Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/compressed_row_sparse_matrix.h" |
| 32 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 33 | #include "ceres/casts.h" |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 34 | #include "ceres/crs_matrix.h" |
| 35 | #include "ceres/internal/eigen.h" |
| 36 | #include "ceres/internal/scoped_ptr.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 37 | #include "ceres/linear_least_squares_problems.h" |
| 38 | #include "ceres/matrix_proto.h" |
| 39 | #include "ceres/triplet_sparse_matrix.h" |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 40 | #include "gtest/gtest.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 41 | |
| 42 | namespace ceres { |
| 43 | namespace internal { |
| 44 | |
| 45 | void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) { |
| 46 | EXPECT_EQ(a->num_rows(), b->num_rows()); |
| 47 | EXPECT_EQ(a->num_cols(), b->num_cols()); |
| 48 | |
| 49 | int num_rows = a->num_rows(); |
| 50 | int num_cols = a->num_cols(); |
| 51 | |
| 52 | for (int i = 0; i < num_cols; ++i) { |
| 53 | Vector x = Vector::Zero(num_cols); |
| 54 | x(i) = 1.0; |
| 55 | |
| 56 | Vector y_a = Vector::Zero(num_rows); |
| 57 | Vector y_b = Vector::Zero(num_rows); |
| 58 | |
| 59 | a->RightMultiply(x.data(), y_a.data()); |
| 60 | b->RightMultiply(x.data(), y_b.data()); |
| 61 | |
| 62 | EXPECT_EQ((y_a - y_b).norm(), 0); |
| 63 | } |
| 64 | } |
| 65 | |
| 66 | class CompressedRowSparseMatrixTest : public ::testing::Test { |
| 67 | protected : |
| 68 | virtual void SetUp() { |
| 69 | scoped_ptr<LinearLeastSquaresProblem> problem( |
| 70 | CreateLinearLeastSquaresProblemFromId(1)); |
| 71 | |
| 72 | CHECK_NOTNULL(problem.get()); |
| 73 | |
| 74 | tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); |
| 75 | crsm.reset(new CompressedRowSparseMatrix(*tsm)); |
| 76 | |
| 77 | num_rows = tsm->num_rows(); |
| 78 | num_cols = tsm->num_cols(); |
| 79 | } |
| 80 | |
| 81 | int num_rows; |
| 82 | int num_cols; |
| 83 | |
| 84 | scoped_ptr<TripletSparseMatrix> tsm; |
| 85 | scoped_ptr<CompressedRowSparseMatrix> crsm; |
| 86 | }; |
| 87 | |
| 88 | TEST_F(CompressedRowSparseMatrixTest, RightMultiply) { |
| 89 | CompareMatrices(tsm.get(), crsm.get()); |
| 90 | } |
| 91 | |
| 92 | TEST_F(CompressedRowSparseMatrixTest, LeftMultiply) { |
| 93 | for (int i = 0; i < num_rows; ++i) { |
| 94 | Vector a = Vector::Zero(num_rows); |
| 95 | a(i) = 1.0; |
| 96 | |
| 97 | Vector b1 = Vector::Zero(num_cols); |
| 98 | Vector b2 = Vector::Zero(num_cols); |
| 99 | |
| 100 | tsm->LeftMultiply(a.data(), b1.data()); |
| 101 | crsm->LeftMultiply(a.data(), b2.data()); |
| 102 | |
| 103 | EXPECT_EQ((b1 - b2).norm(), 0); |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | TEST_F(CompressedRowSparseMatrixTest, ColumnNorm) { |
| 108 | Vector b1 = Vector::Zero(num_cols); |
| 109 | Vector b2 = Vector::Zero(num_cols); |
| 110 | |
| 111 | tsm->SquaredColumnNorm(b1.data()); |
| 112 | crsm->SquaredColumnNorm(b2.data()); |
| 113 | |
| 114 | EXPECT_EQ((b1 - b2).norm(), 0); |
| 115 | } |
| 116 | |
| 117 | TEST_F(CompressedRowSparseMatrixTest, Scale) { |
| 118 | Vector scale(num_cols); |
| 119 | for (int i = 0; i < num_cols; ++i) { |
| 120 | scale(i) = i + 1; |
| 121 | } |
| 122 | |
| 123 | tsm->ScaleColumns(scale.data()); |
| 124 | crsm->ScaleColumns(scale.data()); |
| 125 | CompareMatrices(tsm.get(), crsm.get()); |
| 126 | } |
| 127 | |
| 128 | TEST_F(CompressedRowSparseMatrixTest, DeleteRows) { |
| 129 | for (int i = 0; i < num_rows; ++i) { |
| 130 | tsm->Resize(num_rows - i, num_cols); |
| 131 | crsm->DeleteRows(crsm->num_rows() - tsm->num_rows()); |
| 132 | CompareMatrices(tsm.get(), crsm.get()); |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | TEST_F(CompressedRowSparseMatrixTest, AppendRows) { |
| 137 | for (int i = 0; i < num_rows; ++i) { |
| 138 | TripletSparseMatrix tsm_appendage(*tsm); |
| 139 | tsm_appendage.Resize(i, num_cols); |
| 140 | |
| 141 | tsm->AppendRows(tsm_appendage); |
| 142 | CompressedRowSparseMatrix crsm_appendage(tsm_appendage); |
| 143 | crsm->AppendRows(crsm_appendage); |
| 144 | |
| 145 | CompareMatrices(tsm.get(), crsm.get()); |
| 146 | } |
| 147 | } |
| 148 | |
Sameer Agarwal | dd2b17d | 2012-08-16 19:34:57 -0700 | [diff] [blame] | 149 | #ifndef CERES_NO_PROTOCOL_BUFFERS |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 150 | TEST_F(CompressedRowSparseMatrixTest, Serialization) { |
| 151 | SparseMatrixProto proto; |
| 152 | crsm->ToProto(&proto); |
| 153 | |
| 154 | CompressedRowSparseMatrix n(proto); |
| 155 | ASSERT_EQ(n.num_rows(), crsm->num_rows()); |
| 156 | ASSERT_EQ(n.num_cols(), crsm->num_cols()); |
| 157 | ASSERT_EQ(n.num_nonzeros(), crsm->num_nonzeros()); |
| 158 | |
| 159 | for (int i = 0; i < n.num_rows() + 1; ++i) { |
| 160 | ASSERT_EQ(crsm->rows()[i], proto.compressed_row_matrix().rows(i)); |
| 161 | ASSERT_EQ(crsm->rows()[i], n.rows()[i]); |
| 162 | } |
| 163 | |
| 164 | for (int i = 0; i < crsm->num_nonzeros(); ++i) { |
| 165 | ASSERT_EQ(crsm->cols()[i], proto.compressed_row_matrix().cols(i)); |
| 166 | ASSERT_EQ(crsm->cols()[i], n.cols()[i]); |
| 167 | ASSERT_EQ(crsm->values()[i], proto.compressed_row_matrix().values(i)); |
| 168 | ASSERT_EQ(crsm->values()[i], n.values()[i]); |
| 169 | } |
| 170 | } |
| 171 | #endif |
| 172 | |
| 173 | TEST_F(CompressedRowSparseMatrixTest, ToDenseMatrix) { |
| 174 | Matrix tsm_dense; |
| 175 | Matrix crsm_dense; |
| 176 | |
| 177 | tsm->ToDenseMatrix(&tsm_dense); |
| 178 | crsm->ToDenseMatrix(&crsm_dense); |
| 179 | |
| 180 | EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0); |
| 181 | } |
| 182 | |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 183 | TEST_F(CompressedRowSparseMatrixTest, ToCRSMatrix) { |
| 184 | CRSMatrix crs_matrix; |
| 185 | crsm->ToCRSMatrix(&crs_matrix); |
| 186 | EXPECT_EQ(crsm->num_rows(), crs_matrix.num_rows); |
| 187 | EXPECT_EQ(crsm->num_cols(), crs_matrix.num_cols); |
| 188 | EXPECT_EQ(crsm->num_rows() + 1, crs_matrix.rows.size()); |
| 189 | EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.cols.size()); |
| 190 | EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.values.size()); |
| 191 | |
| 192 | for (int i = 0; i < crsm->num_rows() + 1; ++i) { |
| 193 | EXPECT_EQ(crsm->rows()[i], crs_matrix.rows[i]); |
| 194 | } |
| 195 | |
| 196 | for (int i = 0; i < crsm->num_nonzeros(); ++i) { |
| 197 | EXPECT_EQ(crsm->cols()[i], crs_matrix.cols[i]); |
| 198 | EXPECT_EQ(crsm->values()[i], crs_matrix.values[i]); |
| 199 | } |
| 200 | } |
| 201 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 202 | } // namespace internal |
| 203 | } // namespace ceres |