Sameer Agarwal | 085cd4a | 2013-02-06 14:31:07 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include <glog/logging.h> |
| 32 | #include "ceres/ceres.h" |
| 33 | |
| 34 | // Data generated using the following octave code. |
| 35 | // randn('seed', 23497); |
| 36 | // m = 0.3; |
| 37 | // c = 0.1; |
| 38 | // x=[0:0.075:5]; |
| 39 | // y = exp(m * x + c); |
| 40 | // noise = randn(size(x)) * 0.2; |
| 41 | // outlier_noise = rand(size(x)) < 0.05; |
| 42 | // y_observed = y + noise + outlier_noise; |
| 43 | // data = [x', y_observed']; |
| 44 | |
| 45 | const int kNumObservations = 67; |
| 46 | const double data[] = { |
| 47 | 0.000000e+00, 1.133898e+00, |
| 48 | 7.500000e-02, 1.334902e+00, |
| 49 | 1.500000e-01, 1.213546e+00, |
| 50 | 2.250000e-01, 1.252016e+00, |
| 51 | 3.000000e-01, 1.392265e+00, |
| 52 | 3.750000e-01, 1.314458e+00, |
| 53 | 4.500000e-01, 1.472541e+00, |
| 54 | 5.250000e-01, 1.536218e+00, |
| 55 | 6.000000e-01, 1.355679e+00, |
| 56 | 6.750000e-01, 1.463566e+00, |
| 57 | 7.500000e-01, 1.490201e+00, |
| 58 | 8.250000e-01, 1.658699e+00, |
| 59 | 9.000000e-01, 1.067574e+00, |
| 60 | 9.750000e-01, 1.464629e+00, |
| 61 | 1.050000e+00, 1.402653e+00, |
| 62 | 1.125000e+00, 1.713141e+00, |
| 63 | 1.200000e+00, 1.527021e+00, |
| 64 | 1.275000e+00, 1.702632e+00, |
| 65 | 1.350000e+00, 1.423899e+00, |
| 66 | 1.425000e+00, 5.543078e+00, // Outlier point |
| 67 | 1.500000e+00, 5.664015e+00, // Outlier point |
| 68 | 1.575000e+00, 1.732484e+00, |
| 69 | 1.650000e+00, 1.543296e+00, |
| 70 | 1.725000e+00, 1.959523e+00, |
| 71 | 1.800000e+00, 1.685132e+00, |
| 72 | 1.875000e+00, 1.951791e+00, |
| 73 | 1.950000e+00, 2.095346e+00, |
| 74 | 2.025000e+00, 2.361460e+00, |
| 75 | 2.100000e+00, 2.169119e+00, |
| 76 | 2.175000e+00, 2.061745e+00, |
| 77 | 2.250000e+00, 2.178641e+00, |
| 78 | 2.325000e+00, 2.104346e+00, |
| 79 | 2.400000e+00, 2.584470e+00, |
| 80 | 2.475000e+00, 1.914158e+00, |
| 81 | 2.550000e+00, 2.368375e+00, |
| 82 | 2.625000e+00, 2.686125e+00, |
| 83 | 2.700000e+00, 2.712395e+00, |
| 84 | 2.775000e+00, 2.499511e+00, |
| 85 | 2.850000e+00, 2.558897e+00, |
| 86 | 2.925000e+00, 2.309154e+00, |
| 87 | 3.000000e+00, 2.869503e+00, |
| 88 | 3.075000e+00, 3.116645e+00, |
| 89 | 3.150000e+00, 3.094907e+00, |
| 90 | 3.225000e+00, 2.471759e+00, |
| 91 | 3.300000e+00, 3.017131e+00, |
| 92 | 3.375000e+00, 3.232381e+00, |
| 93 | 3.450000e+00, 2.944596e+00, |
| 94 | 3.525000e+00, 3.385343e+00, |
| 95 | 3.600000e+00, 3.199826e+00, |
| 96 | 3.675000e+00, 3.423039e+00, |
| 97 | 3.750000e+00, 3.621552e+00, |
| 98 | 3.825000e+00, 3.559255e+00, |
| 99 | 3.900000e+00, 3.530713e+00, |
| 100 | 3.975000e+00, 3.561766e+00, |
| 101 | 4.050000e+00, 3.544574e+00, |
| 102 | 4.125000e+00, 3.867945e+00, |
| 103 | 4.200000e+00, 4.049776e+00, |
| 104 | 4.275000e+00, 3.885601e+00, |
| 105 | 4.350000e+00, 4.110505e+00, |
| 106 | 4.425000e+00, 4.345320e+00, |
| 107 | 4.500000e+00, 4.161241e+00, |
| 108 | 4.575000e+00, 4.363407e+00, |
| 109 | 4.650000e+00, 4.161576e+00, |
| 110 | 4.725000e+00, 4.619728e+00, |
| 111 | 4.800000e+00, 4.737410e+00, |
| 112 | 4.875000e+00, 4.727863e+00, |
| 113 | 4.950000e+00, 4.669206e+00 |
| 114 | }; |
| 115 | |
| 116 | using ceres::AutoDiffCostFunction; |
| 117 | using ceres::CostFunction; |
| 118 | using ceres::CauchyLoss; |
| 119 | using ceres::Problem; |
| 120 | using ceres::Solve; |
| 121 | using ceres::Solver; |
| 122 | |
| 123 | struct ExponentialResidual { |
| 124 | ExponentialResidual(double x, double y) |
| 125 | : x_(x), y_(y) {} |
| 126 | |
| 127 | template <typename T> bool operator()(const T* const m, |
| 128 | const T* const c, |
| 129 | T* residual) const { |
| 130 | residual[0] = T(y_) - exp(m[0] * T(x_) + c[0]); |
| 131 | return true; |
| 132 | } |
| 133 | |
| 134 | private: |
| 135 | const double x_; |
| 136 | const double y_; |
| 137 | }; |
| 138 | |
| 139 | int main(int argc, char** argv) { |
| 140 | google::InitGoogleLogging(argv[0]); |
| 141 | |
| 142 | double m = 0.0; |
| 143 | double c = 0.0; |
| 144 | |
| 145 | Problem problem; |
| 146 | for (int i = 0; i < kNumObservations; ++i) { |
| 147 | CostFunction* cost_function = |
| 148 | new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>( |
| 149 | new ExponentialResidual(data[2 * i], data[2 * i + 1])); |
| 150 | problem.AddResidualBlock(cost_function, NULL, &m, &c); |
| 151 | } |
| 152 | |
| 153 | Solver::Options options; |
| 154 | options.linear_solver_type = ceres::DENSE_QR; |
| 155 | options.minimizer_progress_to_stdout = true; |
| 156 | |
| 157 | Solver::Summary summary; |
| 158 | Solve(options, &problem, &summary); |
| 159 | std::cout << summary.BriefReport() << "\n"; |
| 160 | std::cout << "Initial m: " << 0.0 << " c: " << 0.0 << "\n"; |
| 161 | std::cout << "Final m: " << m << " c: " << c << "\n"; |
| 162 | return 0; |
| 163 | } |