Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // |
| 31 | // A minimal, self-contained bundle adjuster using Ceres, that reads |
| 32 | // files from University of Washington' Bundle Adjustment in the Large dataset: |
| 33 | // http://grail.cs.washington.edu/projects/bal |
| 34 | // |
| 35 | // This does not use the best configuration for solving; see the more involved |
| 36 | // bundle_adjuster.cc file for details. |
| 37 | |
| 38 | #include <cmath> |
| 39 | #include <cstdio> |
| 40 | #include <iostream> |
| 41 | |
| 42 | #include "ceres/ceres.h" |
| 43 | #include "ceres/rotation.h" |
| 44 | |
| 45 | // Read a Bundle Adjustment in the Large dataset. |
| 46 | class BALProblem { |
| 47 | public: |
| 48 | ~BALProblem() { |
| 49 | delete[] point_index_; |
| 50 | delete[] camera_index_; |
| 51 | delete[] observations_; |
| 52 | delete[] parameters_; |
| 53 | } |
| 54 | |
| 55 | int num_observations() const { return num_observations_; } |
| 56 | const double* observations() const { return observations_; } |
| 57 | double* mutable_cameras() { return parameters_; } |
| 58 | double* mutable_points() { return parameters_ + 9 * num_cameras_; } |
| 59 | |
| 60 | double* mutable_camera_for_observation(int i) { |
| 61 | return mutable_cameras() + camera_index_[i] * 9; |
| 62 | } |
| 63 | double* mutable_point_for_observation(int i) { |
| 64 | return mutable_points() + point_index_[i] * 3; |
| 65 | } |
| 66 | |
| 67 | bool LoadFile(const char* filename) { |
| 68 | FILE* fptr = fopen(filename, "r"); |
| 69 | if (fptr == NULL) { |
| 70 | return false; |
| 71 | }; |
| 72 | |
| 73 | FscanfOrDie(fptr, "%d", &num_cameras_); |
| 74 | FscanfOrDie(fptr, "%d", &num_points_); |
| 75 | FscanfOrDie(fptr, "%d", &num_observations_); |
| 76 | |
| 77 | point_index_ = new int[num_observations_]; |
| 78 | camera_index_ = new int[num_observations_]; |
| 79 | observations_ = new double[2 * num_observations_]; |
| 80 | |
| 81 | num_parameters_ = 9 * num_cameras_ + 3 * num_points_; |
| 82 | parameters_ = new double[num_parameters_]; |
| 83 | |
| 84 | for (int i = 0; i < num_observations_; ++i) { |
| 85 | FscanfOrDie(fptr, "%d", camera_index_ + i); |
| 86 | FscanfOrDie(fptr, "%d", point_index_ + i); |
| 87 | for (int j = 0; j < 2; ++j) { |
| 88 | FscanfOrDie(fptr, "%lf", observations_ + 2*i + j); |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | for (int i = 0; i < num_parameters_; ++i) { |
| 93 | FscanfOrDie(fptr, "%lf", parameters_ + i); |
| 94 | } |
| 95 | return true; |
| 96 | } |
| 97 | |
| 98 | private: |
| 99 | template<typename T> |
| 100 | void FscanfOrDie(FILE *fptr, const char *format, T *value) { |
| 101 | int num_scanned = fscanf(fptr, format, value); |
| 102 | if (num_scanned != 1) { |
| 103 | LOG(FATAL) << "Invalid UW data file."; |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | int num_cameras_; |
| 108 | int num_points_; |
| 109 | int num_observations_; |
| 110 | int num_parameters_; |
| 111 | |
| 112 | int* point_index_; |
| 113 | int* camera_index_; |
| 114 | double* observations_; |
| 115 | double* parameters_; |
| 116 | }; |
| 117 | |
| 118 | // Templated pinhole camera model for used with Ceres. The camera is |
| 119 | // parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for |
| 120 | // focal length and 2 for radial distortion. The principal point is not modeled |
| 121 | // (i.e. it is assumed be located at the image center). |
| 122 | struct SnavelyReprojectionError { |
| 123 | SnavelyReprojectionError(double observed_x, double observed_y) |
| 124 | : observed_x(observed_x), observed_y(observed_y) {} |
| 125 | |
| 126 | template <typename T> |
| 127 | bool operator()(const T* const camera, |
| 128 | const T* const point, |
| 129 | T* residuals) const { |
| 130 | // camera[0,1,2] are the angle-axis rotation. |
| 131 | T p[3]; |
| 132 | ceres::AngleAxisRotatePoint(camera, point, p); |
| 133 | |
| 134 | // camera[3,4,5] are the translation. |
| 135 | p[0] += camera[3]; |
| 136 | p[1] += camera[4]; |
| 137 | p[2] += camera[5]; |
| 138 | |
| 139 | // Compute the center of distortion. The sign change comes from |
| 140 | // the camera model that Noah Snavely's Bundler assumes, whereby |
| 141 | // the camera coordinate system has a negative z axis. |
| 142 | const T& focal = camera[6]; |
| 143 | T xp = - focal * p[0] / p[2]; |
| 144 | T yp = - focal * p[1] / p[2]; |
| 145 | |
| 146 | // Apply second and fourth order radial distortion. |
| 147 | const T& l1 = camera[7]; |
| 148 | const T& l2 = camera[8]; |
| 149 | T r2 = xp*xp + yp*yp; |
| 150 | T distortion = T(1.0) + r2 * (l1 + l2 * r2); |
| 151 | |
| 152 | // Compute final projected point position. |
| 153 | T predicted_x = distortion * xp; |
| 154 | T predicted_y = distortion * yp; |
| 155 | |
| 156 | // The error is the difference between the predicted and observed position. |
| 157 | residuals[0] = predicted_x - T(observed_x); |
| 158 | residuals[1] = predicted_y - T(observed_y); |
| 159 | |
| 160 | return true; |
| 161 | } |
| 162 | |
| 163 | double observed_x; |
| 164 | double observed_y; |
| 165 | }; |
| 166 | |
| 167 | int main(int argc, char** argv) { |
Sameer Agarwal | 82f4b88 | 2012-05-06 21:05:28 -0700 | [diff] [blame] | 168 | google::InitGoogleLogging(argv[0]); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 169 | if (argc != 2) { |
| 170 | std::cerr << "usage: simple_bundle_adjuster <bal_problem>\n"; |
| 171 | return 1; |
| 172 | } |
| 173 | |
| 174 | BALProblem bal_problem; |
| 175 | if (!bal_problem.LoadFile(argv[1])) { |
| 176 | std::cerr << "ERROR: unable to open file " << argv[1] << "\n"; |
| 177 | return 1; |
| 178 | } |
| 179 | |
| 180 | // Create residuals for each observation in the bundle adjustment problem. The |
| 181 | // parameters for cameras and points are added automatically. |
| 182 | ceres::Problem problem; |
| 183 | for (int i = 0; i < bal_problem.num_observations(); ++i) { |
| 184 | // Each Residual block takes a point and a camera as input and outputs a 2 |
| 185 | // dimensional residual. Internally, the cost function stores the observed |
| 186 | // image location and compares the reprojection against the observation. |
| 187 | ceres::CostFunction* cost_function = |
| 188 | new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>( |
| 189 | new SnavelyReprojectionError( |
| 190 | bal_problem.observations()[2 * i + 0], |
| 191 | bal_problem.observations()[2 * i + 1])); |
| 192 | |
| 193 | problem.AddResidualBlock(cost_function, |
| 194 | NULL /* squared loss */, |
| 195 | bal_problem.mutable_camera_for_observation(i), |
| 196 | bal_problem.mutable_point_for_observation(i)); |
| 197 | } |
| 198 | |
| 199 | // Make Ceres automatically detect the bundle structure. Note that the |
| 200 | // standard solver, SPARSE_NORMAL_CHOLESKY, also works fine but it is slower |
| 201 | // for standard bundle adjustment problems. |
| 202 | ceres::Solver::Options options; |
| 203 | options.linear_solver_type = ceres::DENSE_SCHUR; |
| 204 | options.ordering_type = ceres::SCHUR; |
| 205 | options.minimizer_progress_to_stdout = true; |
| 206 | |
| 207 | ceres::Solver::Summary summary; |
| 208 | ceres::Solve(options, &problem, &summary); |
| 209 | std::cout << summary.FullReport() << "\n"; |
| 210 | return 0; |
| 211 | } |