Sameer Agarwal | ea11704 | 2012-08-29 18:18:48 -0700 | [diff] [blame] | 1 | NIST/ITL StRD
|
| 2 | Dataset Name: Lanczos1 (Lanczos1.dat)
|
| 3 |
|
| 4 | File Format: ASCII
|
| 5 | Starting Values (lines 41 to 46)
|
| 6 | Certified Values (lines 41 to 51)
|
| 7 | Data (lines 61 to 84)
|
| 8 |
|
| 9 | Procedure: Nonlinear Least Squares Regression
|
| 10 |
|
| 11 | Description: These data are taken from an example discussed in
|
| 12 | Lanczos (1956). The data were generated to 14-digits
|
| 13 | of accuracy using
|
| 14 | f(x) = 0.0951*exp(-x) + 0.8607*exp(-3*x)
|
| 15 | + 1.5576*exp(-5*x).
|
| 16 |
|
| 17 |
|
| 18 | Reference: Lanczos, C. (1956).
|
| 19 | Applied Analysis.
|
| 20 | Englewood Cliffs, NJ: Prentice Hall, pp. 272-280.
|
| 21 |
|
| 22 |
|
| 23 |
|
| 24 |
|
| 25 | Data: 1 Response (y)
|
| 26 | 1 Predictor (x)
|
| 27 | 24 Observations
|
| 28 | Average Level of Difficulty
|
| 29 | Generated Data
|
| 30 |
|
| 31 | Model: Exponential Class
|
| 32 | 6 Parameters (b1 to b6)
|
| 33 |
|
| 34 | y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x) + e
|
| 35 |
|
| 36 |
|
| 37 |
|
| 38 | Starting values Certified Values
|
| 39 |
|
| 40 | Start 1 Start 2 Parameter Standard Deviation
|
| 41 | b1 = 1.2 0.5 9.5100000027E-02 5.3347304234E-11
|
| 42 | b2 = 0.3 0.7 1.0000000001E+00 2.7473038179E-10
|
| 43 | b3 = 5.6 3.6 8.6070000013E-01 1.3576062225E-10
|
| 44 | b4 = 5.5 4.2 3.0000000002E+00 3.3308253069E-10
|
| 45 | b5 = 6.5 4 1.5575999998E+00 1.8815731448E-10
|
| 46 | b6 = 7.6 6.3 5.0000000001E+00 1.1057500538E-10
|
| 47 |
|
| 48 | Residual Sum of Squares: 1.4307867721E-25
|
| 49 | Residual Standard Deviation: 8.9156129349E-14
|
| 50 | Degrees of Freedom: 18
|
| 51 | Number of Observations: 24
|
| 52 |
|
| 53 |
|
| 54 |
|
| 55 |
|
| 56 |
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 | Data: y x
|
| 61 | 2.513400000000E+00 0.000000000000E+00
|
| 62 | 2.044333373291E+00 5.000000000000E-02
|
| 63 | 1.668404436564E+00 1.000000000000E-01
|
| 64 | 1.366418021208E+00 1.500000000000E-01
|
| 65 | 1.123232487372E+00 2.000000000000E-01
|
| 66 | 9.268897180037E-01 2.500000000000E-01
|
| 67 | 7.679338563728E-01 3.000000000000E-01
|
| 68 | 6.388775523106E-01 3.500000000000E-01
|
| 69 | 5.337835317402E-01 4.000000000000E-01
|
| 70 | 4.479363617347E-01 4.500000000000E-01
|
| 71 | 3.775847884350E-01 5.000000000000E-01
|
| 72 | 3.197393199326E-01 5.500000000000E-01
|
| 73 | 2.720130773746E-01 6.000000000000E-01
|
| 74 | 2.324965529032E-01 6.500000000000E-01
|
| 75 | 1.996589546065E-01 7.000000000000E-01
|
| 76 | 1.722704126914E-01 7.500000000000E-01
|
| 77 | 1.493405660168E-01 8.000000000000E-01
|
| 78 | 1.300700206922E-01 8.500000000000E-01
|
| 79 | 1.138119324644E-01 9.000000000000E-01
|
| 80 | 1.000415587559E-01 9.500000000000E-01
|
| 81 | 8.833209084540E-02 1.000000000000E+00
|
| 82 | 7.833544019350E-02 1.050000000000E+00
|
| 83 | 6.976693743449E-02 1.100000000000E+00
|
| 84 | 6.239312536719E-02 1.150000000000E+00
|