Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: thadh@gmail.com (Thad Hughes) |
| 30 | // mierle@gmail.com (Keir Mierle) |
| 31 | // sameeragarwal@google.com (Sameer Agarwal) |
| 32 | |
| 33 | #include "ceres/dynamic_autodiff_cost_function.h" |
| 34 | |
| 35 | #include <cstddef> |
| 36 | |
| 37 | #include "gtest/gtest.h" |
| 38 | |
| 39 | namespace ceres { |
| 40 | namespace internal { |
| 41 | |
| 42 | // Takes 2 parameter blocks: |
| 43 | // parameters[0] is size 10. |
| 44 | // parameters[1] is size 5. |
| 45 | // Emits 21 residuals: |
| 46 | // A: i - parameters[0][i], for i in [0,10) -- this is 10 residuals |
| 47 | // B: parameters[0][i] - i, for i in [0,10) -- this is another 10. |
| 48 | // C: sum(parameters[0][i]^2 - 8*parameters[0][i]) + sum(parameters[1][i]) |
| 49 | class MyCostFunctor { |
| 50 | public: |
| 51 | template <typename T> |
| 52 | bool operator()(T const* const* parameters, T* residuals) const { |
| 53 | const T* params0 = parameters[0]; |
| 54 | int r = 0; |
| 55 | for (int i = 0; i < 10; ++i) { |
| 56 | residuals[r++] = T(i) - params0[i]; |
| 57 | residuals[r++] = params0[i] - T(i); |
| 58 | } |
| 59 | |
| 60 | T c_residual(0.0); |
| 61 | for (int i = 0; i < 10; ++i) { |
| 62 | c_residual += pow(params0[i], 2) - T(8) * params0[i]; |
| 63 | } |
| 64 | |
| 65 | const T* params1 = parameters[1]; |
| 66 | for (int i = 0; i < 5; ++i) { |
| 67 | c_residual += params1[i]; |
| 68 | } |
| 69 | residuals[r++] = c_residual; |
| 70 | return true; |
| 71 | } |
| 72 | }; |
| 73 | |
| 74 | TEST(DynamicAutodiffCostFunctionTest, TestResiduals) { |
| 75 | vector<double> param_block_0(10, 0.0); |
| 76 | vector<double> param_block_1(5, 0.0); |
| 77 | DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| 78 | new MyCostFunctor()); |
| 79 | cost_function.AddParameterBlock(param_block_0.size()); |
| 80 | cost_function.AddParameterBlock(param_block_1.size()); |
| 81 | cost_function.SetNumResiduals(21); |
| 82 | |
| 83 | // Test residual computation. |
| 84 | vector<double> residuals(21, -100000); |
| 85 | vector<double*> parameter_blocks(2); |
| 86 | parameter_blocks[0] = ¶m_block_0[0]; |
| 87 | parameter_blocks[1] = ¶m_block_1[0]; |
| 88 | EXPECT_TRUE(cost_function.Evaluate(¶meter_blocks[0], |
| 89 | residuals.data(), |
| 90 | NULL)); |
| 91 | for (int r = 0; r < 10; ++r) { |
| 92 | EXPECT_EQ(1.0 * r, residuals.at(r * 2)); |
| 93 | EXPECT_EQ(-1.0 * r, residuals.at(r * 2 + 1)); |
| 94 | } |
| 95 | EXPECT_EQ(0, residuals.at(20)); |
| 96 | } |
| 97 | |
| 98 | TEST(DynamicAutodiffCostFunctionTest, TestJacobian) { |
| 99 | // Test the residual counting. |
| 100 | vector<double> param_block_0(10, 0.0); |
| 101 | for (int i = 0; i < 10; ++i) { |
| 102 | param_block_0[i] = 2 * i; |
| 103 | } |
| 104 | vector<double> param_block_1(5, 0.0); |
| 105 | DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| 106 | new MyCostFunctor()); |
| 107 | cost_function.AddParameterBlock(param_block_0.size()); |
| 108 | cost_function.AddParameterBlock(param_block_1.size()); |
| 109 | cost_function.SetNumResiduals(21); |
| 110 | |
| 111 | // Prepare the residuals. |
| 112 | vector<double> residuals(21, -100000); |
| 113 | |
| 114 | // Prepare the parameters. |
| 115 | vector<double*> parameter_blocks(2); |
| 116 | parameter_blocks[0] = ¶m_block_0[0]; |
| 117 | parameter_blocks[1] = ¶m_block_1[0]; |
| 118 | |
| 119 | // Prepare the jacobian. |
| 120 | vector<vector<double> > jacobian_vect(2); |
| 121 | jacobian_vect[0].resize(21 * 10, -100000); |
| 122 | jacobian_vect[1].resize(21 * 5, -100000); |
| 123 | vector<double*> jacobian; |
| 124 | jacobian.push_back(jacobian_vect[0].data()); |
| 125 | jacobian.push_back(jacobian_vect[1].data()); |
| 126 | |
| 127 | // Test jacobian computation. |
| 128 | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), |
| 129 | residuals.data(), |
| 130 | jacobian.data())); |
| 131 | |
| 132 | for (int r = 0; r < 10; ++r) { |
| 133 | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| 134 | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| 135 | } |
| 136 | EXPECT_EQ(420, residuals.at(20)); |
| 137 | for (int p = 0; p < 10; ++p) { |
| 138 | // Check "A" Jacobian. |
| 139 | EXPECT_EQ(-1.0, jacobian_vect[0][2*p * 10 + p]); |
| 140 | // Check "B" Jacobian. |
| 141 | EXPECT_EQ(+1.0, jacobian_vect[0][(2*p+1) * 10 + p]); |
| 142 | jacobian_vect[0][2*p * 10 + p] = 0.0; |
| 143 | jacobian_vect[0][(2*p+1) * 10 + p] = 0.0; |
| 144 | } |
| 145 | |
| 146 | // Check "C" Jacobian for first parameter block. |
| 147 | for (int p = 0; p < 10; ++p) { |
| 148 | EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]); |
| 149 | jacobian_vect[0][20 * 10 + p] = 0.0; |
| 150 | } |
| 151 | for (int i = 0; i < jacobian_vect[0].size(); ++i) { |
| 152 | EXPECT_EQ(0.0, jacobian_vect[0][i]); |
| 153 | } |
| 154 | |
| 155 | // Check "C" Jacobian for second parameter block. |
| 156 | for (int p = 0; p < 5; ++p) { |
| 157 | EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]); |
| 158 | jacobian_vect[1][20 * 5 + p] = 0.0; |
| 159 | } |
| 160 | for (int i = 0; i < jacobian_vect[1].size(); ++i) { |
| 161 | EXPECT_EQ(0.0, jacobian_vect[1][i]); |
| 162 | } |
| 163 | } |
| 164 | |
Sameer Agarwal | 974513a | 2013-02-12 14:22:40 -0800 | [diff] [blame] | 165 | TEST(DynamicAutodiffCostFunctionTest, JacobianWithFirstParameterBlockConstant) { |
| 166 | // Test the residual counting. |
| 167 | vector<double> param_block_0(10, 0.0); |
| 168 | for (int i = 0; i < 10; ++i) { |
| 169 | param_block_0[i] = 2 * i; |
| 170 | } |
| 171 | vector<double> param_block_1(5, 0.0); |
| 172 | DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| 173 | new MyCostFunctor()); |
| 174 | cost_function.AddParameterBlock(param_block_0.size()); |
| 175 | cost_function.AddParameterBlock(param_block_1.size()); |
| 176 | cost_function.SetNumResiduals(21); |
| 177 | |
| 178 | // Prepare the residuals. |
| 179 | vector<double> residuals(21, -100000); |
| 180 | |
| 181 | // Prepare the parameters. |
| 182 | vector<double*> parameter_blocks(2); |
| 183 | parameter_blocks[0] = ¶m_block_0[0]; |
| 184 | parameter_blocks[1] = ¶m_block_1[0]; |
| 185 | |
| 186 | // Prepare the jacobian. |
| 187 | vector<vector<double> > jacobian_vect(2); |
| 188 | jacobian_vect[0].resize(21 * 10, -100000); |
| 189 | jacobian_vect[1].resize(21 * 5, -100000); |
| 190 | vector<double*> jacobian; |
| 191 | jacobian.push_back(NULL); |
| 192 | jacobian.push_back(jacobian_vect[1].data()); |
| 193 | |
| 194 | // Test jacobian computation. |
| 195 | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), |
| 196 | residuals.data(), |
| 197 | jacobian.data())); |
| 198 | |
| 199 | for (int r = 0; r < 10; ++r) { |
| 200 | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| 201 | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| 202 | } |
| 203 | EXPECT_EQ(420, residuals.at(20)); |
| 204 | |
| 205 | // Check "C" Jacobian for second parameter block. |
| 206 | for (int p = 0; p < 5; ++p) { |
| 207 | EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]); |
| 208 | jacobian_vect[1][20 * 5 + p] = 0.0; |
| 209 | } |
| 210 | for (int i = 0; i < jacobian_vect[1].size(); ++i) { |
| 211 | EXPECT_EQ(0.0, jacobian_vect[1][i]); |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | TEST(DynamicAutodiffCostFunctionTest, JacobianWithSecondParameterBlockConstant) { |
| 216 | // Test the residual counting. |
| 217 | vector<double> param_block_0(10, 0.0); |
| 218 | for (int i = 0; i < 10; ++i) { |
| 219 | param_block_0[i] = 2 * i; |
| 220 | } |
| 221 | vector<double> param_block_1(5, 0.0); |
| 222 | DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| 223 | new MyCostFunctor()); |
| 224 | cost_function.AddParameterBlock(param_block_0.size()); |
| 225 | cost_function.AddParameterBlock(param_block_1.size()); |
| 226 | cost_function.SetNumResiduals(21); |
| 227 | |
| 228 | // Prepare the residuals. |
| 229 | vector<double> residuals(21, -100000); |
| 230 | |
| 231 | // Prepare the parameters. |
| 232 | vector<double*> parameter_blocks(2); |
| 233 | parameter_blocks[0] = ¶m_block_0[0]; |
| 234 | parameter_blocks[1] = ¶m_block_1[0]; |
| 235 | |
| 236 | // Prepare the jacobian. |
| 237 | vector<vector<double> > jacobian_vect(2); |
| 238 | jacobian_vect[0].resize(21 * 10, -100000); |
| 239 | jacobian_vect[1].resize(21 * 5, -100000); |
| 240 | vector<double*> jacobian; |
| 241 | jacobian.push_back(jacobian_vect[0].data()); |
| 242 | jacobian.push_back(NULL); |
| 243 | |
| 244 | // Test jacobian computation. |
| 245 | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), |
| 246 | residuals.data(), |
| 247 | jacobian.data())); |
| 248 | |
| 249 | for (int r = 0; r < 10; ++r) { |
| 250 | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| 251 | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| 252 | } |
| 253 | EXPECT_EQ(420, residuals.at(20)); |
| 254 | for (int p = 0; p < 10; ++p) { |
| 255 | // Check "A" Jacobian. |
| 256 | EXPECT_EQ(-1.0, jacobian_vect[0][2*p * 10 + p]); |
| 257 | // Check "B" Jacobian. |
| 258 | EXPECT_EQ(+1.0, jacobian_vect[0][(2*p+1) * 10 + p]); |
| 259 | jacobian_vect[0][2*p * 10 + p] = 0.0; |
| 260 | jacobian_vect[0][(2*p+1) * 10 + p] = 0.0; |
| 261 | } |
| 262 | |
| 263 | // Check "C" Jacobian for first parameter block. |
| 264 | for (int p = 0; p < 10; ++p) { |
| 265 | EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]); |
| 266 | jacobian_vect[0][20 * 10 + p] = 0.0; |
| 267 | } |
| 268 | for (int i = 0; i < jacobian_vect[0].size(); ++i) { |
| 269 | EXPECT_EQ(0.0, jacobian_vect[0][i]); |
| 270 | } |
| 271 | } |
| 272 | |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 273 | } // namespace internal |
| 274 | } // namespace ceres |