Sameer Agarwal | 747845f | 2012-11-07 18:14:54 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: wjr@google.com (William Rucklidge) |
| 30 | // |
| 31 | // This file contains tests for the GradientChecker class. |
| 32 | |
| 33 | #include "ceres/gradient_checker.h" |
| 34 | |
| 35 | #include <cmath> |
| 36 | #include <cstdlib> |
Sameer Agarwal | 747845f | 2012-11-07 18:14:54 -0800 | [diff] [blame] | 37 | #include <vector> |
| 38 | |
| 39 | #include "ceres/cost_function.h" |
| 40 | #include "ceres/random.h" |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 41 | #include "glog/logging.h" |
Sameer Agarwal | 747845f | 2012-11-07 18:14:54 -0800 | [diff] [blame] | 42 | #include "gtest/gtest.h" |
| 43 | |
| 44 | namespace ceres { |
| 45 | namespace internal { |
| 46 | |
| 47 | // We pick a (non-quadratic) function whose derivative are easy: |
| 48 | // |
| 49 | // f = exp(- a' x). |
| 50 | // df = - f a. |
| 51 | // |
| 52 | // where 'a' is a vector of the same size as 'x'. In the block |
| 53 | // version, they are both block vectors, of course. |
| 54 | class GoodTestTerm : public CostFunction { |
| 55 | public: |
| 56 | GoodTestTerm(int arity, int const *dim) : arity_(arity) { |
| 57 | // Make 'arity' random vectors. |
| 58 | a_.resize(arity_); |
| 59 | for (int j = 0; j < arity_; ++j) { |
| 60 | a_[j].resize(dim[j]); |
| 61 | for (int u = 0; u < dim[j]; ++u) { |
| 62 | a_[j][u] = 2.0 * RandDouble() - 1.0; |
| 63 | } |
| 64 | } |
| 65 | |
| 66 | for (int i = 0; i < arity_; i++) { |
| 67 | mutable_parameter_block_sizes()->push_back(dim[i]); |
| 68 | } |
| 69 | set_num_residuals(1); |
| 70 | } |
| 71 | |
| 72 | bool Evaluate(double const* const* parameters, |
| 73 | double* residuals, |
| 74 | double** jacobians) const { |
| 75 | // Compute a . x. |
| 76 | double ax = 0; |
| 77 | for (int j = 0; j < arity_; ++j) { |
| 78 | for (int u = 0; u < parameter_block_sizes()[j]; ++u) { |
| 79 | ax += a_[j][u] * parameters[j][u]; |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | // This is the cost, but also appears as a factor |
| 84 | // in the derivatives. |
| 85 | double f = *residuals = exp(-ax); |
| 86 | |
| 87 | // Accumulate 1st order derivatives. |
| 88 | if (jacobians) { |
| 89 | for (int j = 0; j < arity_; ++j) { |
| 90 | if (jacobians[j]) { |
| 91 | for (int u = 0; u < parameter_block_sizes()[j]; ++u) { |
| 92 | // See comments before class. |
| 93 | jacobians[j][u] = - f * a_[j][u]; |
| 94 | } |
| 95 | } |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | return true; |
| 100 | } |
| 101 | |
| 102 | private: |
| 103 | int arity_; |
| 104 | vector<vector<double> > a_; // our vectors. |
| 105 | }; |
| 106 | |
| 107 | class BadTestTerm : public CostFunction { |
| 108 | public: |
| 109 | BadTestTerm(int arity, int const *dim) : arity_(arity) { |
| 110 | // Make 'arity' random vectors. |
| 111 | a_.resize(arity_); |
| 112 | for (int j = 0; j < arity_; ++j) { |
| 113 | a_[j].resize(dim[j]); |
| 114 | for (int u = 0; u < dim[j]; ++u) { |
| 115 | a_[j][u] = 2.0 * RandDouble() - 1.0; |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | for (int i = 0; i < arity_; i++) { |
| 120 | mutable_parameter_block_sizes()->push_back(dim[i]); |
| 121 | } |
| 122 | set_num_residuals(1); |
| 123 | } |
| 124 | |
| 125 | bool Evaluate(double const* const* parameters, |
| 126 | double* residuals, |
| 127 | double** jacobians) const { |
| 128 | // Compute a . x. |
| 129 | double ax = 0; |
| 130 | for (int j = 0; j < arity_; ++j) { |
| 131 | for (int u = 0; u < parameter_block_sizes()[j]; ++u) { |
| 132 | ax += a_[j][u] * parameters[j][u]; |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | // This is the cost, but also appears as a factor |
| 137 | // in the derivatives. |
| 138 | double f = *residuals = exp(-ax); |
| 139 | |
| 140 | // Accumulate 1st order derivatives. |
| 141 | if (jacobians) { |
| 142 | for (int j = 0; j < arity_; ++j) { |
| 143 | if (jacobians[j]) { |
| 144 | for (int u = 0; u < parameter_block_sizes()[j]; ++u) { |
| 145 | // See comments before class. |
| 146 | jacobians[j][u] = - f * a_[j][u] + 0.001; |
| 147 | } |
| 148 | } |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | return true; |
| 153 | } |
| 154 | |
| 155 | private: |
| 156 | int arity_; |
| 157 | vector<vector<double> > a_; // our vectors. |
| 158 | }; |
| 159 | |
| 160 | TEST(GradientChecker, SmokeTest) { |
| 161 | srand(5); |
| 162 | |
| 163 | // Test with 3 blocks of size 2, 3 and 4. |
| 164 | int const arity = 3; |
| 165 | int const dim[arity] = { 2, 3, 4 }; |
| 166 | |
| 167 | // Make a random set of blocks. |
| 168 | FixedArray<double*> parameters(arity); |
| 169 | for (int j = 0; j < arity; ++j) { |
| 170 | parameters[j] = new double[dim[j]]; |
| 171 | for (int u = 0; u < dim[j]; ++u) { |
| 172 | parameters[j][u] = 2.0 * RandDouble() - 1.0; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | // Make a term and probe it. |
| 177 | GoodTestTerm good_term(arity, dim); |
| 178 | typedef GradientChecker<GoodTestTerm, 1, 2, 3, 4> GoodTermGradientChecker; |
| 179 | EXPECT_TRUE(GoodTermGradientChecker::Probe( |
| 180 | parameters.get(), 1e-6, &good_term, NULL)); |
| 181 | |
| 182 | BadTestTerm bad_term(arity, dim); |
| 183 | typedef GradientChecker<BadTestTerm, 1, 2, 3, 4> BadTermGradientChecker; |
| 184 | EXPECT_FALSE(BadTermGradientChecker::Probe( |
| 185 | parameters.get(), 1e-6, &bad_term, NULL)); |
| 186 | |
| 187 | for (int j = 0; j < arity; j++) { |
| 188 | delete[] parameters[j]; |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | } // namespace internal |
| 193 | } // namespace ceres |