Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2013 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | |
Sameer Agarwal | 367b65e | 2013-08-09 10:35:37 -0700 | [diff] [blame] | 31 | #include "ceres/small_blas.h" |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 32 | |
| 33 | #include "gtest/gtest.h" |
| 34 | #include "ceres/internal/eigen.h" |
| 35 | |
| 36 | namespace ceres { |
| 37 | namespace internal { |
| 38 | |
| 39 | TEST(BLAS, MatrixMatrixMultiply) { |
| 40 | const double kTolerance = 1e-16; |
| 41 | const int kRowA = 3; |
| 42 | const int kColA = 5; |
| 43 | Matrix A(kRowA, kColA); |
| 44 | A.setOnes(); |
| 45 | |
| 46 | const int kRowB = 5; |
| 47 | const int kColB = 7; |
| 48 | Matrix B(kRowB, kColB); |
| 49 | B.setOnes(); |
| 50 | |
| 51 | for (int row_stride_c = kRowA; row_stride_c < 3 * kRowA; ++row_stride_c) { |
| 52 | for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { |
| 53 | Matrix C(row_stride_c, col_stride_c); |
| 54 | C.setOnes(); |
| 55 | |
| 56 | Matrix C_plus = C; |
| 57 | Matrix C_minus = C; |
| 58 | Matrix C_assign = C; |
| 59 | |
| 60 | Matrix C_plus_ref = C; |
| 61 | Matrix C_minus_ref = C; |
| 62 | Matrix C_assign_ref = C; |
| 63 | for (int start_row_c = 0; start_row_c + kRowA < row_stride_c; ++start_row_c) { |
| 64 | for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { |
| 65 | C_plus_ref.block(start_row_c, start_col_c, kRowA, kColB) += |
| 66 | A * B; |
| 67 | |
| 68 | MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, 1>( |
| 69 | A.data(), kRowA, kColA, |
| 70 | B.data(), kRowB, kColB, |
| 71 | C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 72 | |
| 73 | EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) |
| 74 | << "C += A * B \n" |
| 75 | << "row_stride_c : " << row_stride_c << "\n" |
| 76 | << "col_stride_c : " << col_stride_c << "\n" |
| 77 | << "start_row_c : " << start_row_c << "\n" |
| 78 | << "start_col_c : " << start_col_c << "\n" |
| 79 | << "Cref : \n" << C_plus_ref << "\n" |
| 80 | << "C: \n" << C_plus; |
| 81 | |
| 82 | |
| 83 | C_minus_ref.block(start_row_c, start_col_c, kRowA, kColB) -= |
| 84 | A * B; |
| 85 | |
| 86 | MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, -1>( |
| 87 | A.data(), kRowA, kColA, |
| 88 | B.data(), kRowB, kColB, |
| 89 | C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 90 | |
| 91 | EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) |
| 92 | << "C -= A * B \n" |
| 93 | << "row_stride_c : " << row_stride_c << "\n" |
| 94 | << "col_stride_c : " << col_stride_c << "\n" |
| 95 | << "start_row_c : " << start_row_c << "\n" |
| 96 | << "start_col_c : " << start_col_c << "\n" |
| 97 | << "Cref : \n" << C_minus_ref << "\n" |
| 98 | << "C: \n" << C_minus; |
| 99 | |
| 100 | C_assign_ref.block(start_row_c, start_col_c, kRowA, kColB) = |
| 101 | A * B; |
| 102 | |
| 103 | MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, 0>( |
| 104 | A.data(), kRowA, kColA, |
| 105 | B.data(), kRowB, kColB, |
| 106 | C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 107 | |
| 108 | EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) |
| 109 | << "C = A * B \n" |
| 110 | << "row_stride_c : " << row_stride_c << "\n" |
| 111 | << "col_stride_c : " << col_stride_c << "\n" |
| 112 | << "start_row_c : " << start_row_c << "\n" |
| 113 | << "start_col_c : " << start_col_c << "\n" |
| 114 | << "Cref : \n" << C_assign_ref << "\n" |
| 115 | << "C: \n" << C_assign; |
| 116 | } |
| 117 | } |
| 118 | } |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | TEST(BLAS, MatrixTransposeMatrixMultiply) { |
| 123 | const double kTolerance = 1e-16; |
| 124 | const int kRowA = 5; |
| 125 | const int kColA = 3; |
| 126 | Matrix A(kRowA, kColA); |
| 127 | A.setOnes(); |
| 128 | |
| 129 | const int kRowB = 5; |
| 130 | const int kColB = 7; |
| 131 | Matrix B(kRowB, kColB); |
| 132 | B.setOnes(); |
| 133 | |
| 134 | for (int row_stride_c = kColA; row_stride_c < 3 * kColA; ++row_stride_c) { |
| 135 | for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { |
| 136 | Matrix C(row_stride_c, col_stride_c); |
| 137 | C.setOnes(); |
| 138 | |
| 139 | Matrix C_plus = C; |
| 140 | Matrix C_minus = C; |
| 141 | Matrix C_assign = C; |
| 142 | |
| 143 | Matrix C_plus_ref = C; |
| 144 | Matrix C_minus_ref = C; |
| 145 | Matrix C_assign_ref = C; |
| 146 | for (int start_row_c = 0; start_row_c + kColA < row_stride_c; ++start_row_c) { |
| 147 | for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { |
| 148 | C_plus_ref.block(start_row_c, start_col_c, kColA, kColB) += |
| 149 | A.transpose() * B; |
| 150 | |
| 151 | MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, 1>( |
| 152 | A.data(), kRowA, kColA, |
| 153 | B.data(), kRowB, kColB, |
| 154 | C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 155 | |
| 156 | EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) |
| 157 | << "C += A' * B \n" |
| 158 | << "row_stride_c : " << row_stride_c << "\n" |
| 159 | << "col_stride_c : " << col_stride_c << "\n" |
| 160 | << "start_row_c : " << start_row_c << "\n" |
| 161 | << "start_col_c : " << start_col_c << "\n" |
| 162 | << "Cref : \n" << C_plus_ref << "\n" |
| 163 | << "C: \n" << C_plus; |
| 164 | |
| 165 | C_minus_ref.block(start_row_c, start_col_c, kColA, kColB) -= |
| 166 | A.transpose() * B; |
| 167 | |
| 168 | MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, -1>( |
| 169 | A.data(), kRowA, kColA, |
| 170 | B.data(), kRowB, kColB, |
| 171 | C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 172 | |
| 173 | EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) |
| 174 | << "C -= A' * B \n" |
| 175 | << "row_stride_c : " << row_stride_c << "\n" |
| 176 | << "col_stride_c : " << col_stride_c << "\n" |
| 177 | << "start_row_c : " << start_row_c << "\n" |
| 178 | << "start_col_c : " << start_col_c << "\n" |
| 179 | << "Cref : \n" << C_minus_ref << "\n" |
| 180 | << "C: \n" << C_minus; |
| 181 | |
| 182 | C_assign_ref.block(start_row_c, start_col_c, kColA, kColB) = |
| 183 | A.transpose() * B; |
| 184 | |
| 185 | MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, 0>( |
| 186 | A.data(), kRowA, kColA, |
| 187 | B.data(), kRowB, kColB, |
| 188 | C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 189 | |
| 190 | EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) |
| 191 | << "C = A' * B \n" |
| 192 | << "row_stride_c : " << row_stride_c << "\n" |
| 193 | << "col_stride_c : " << col_stride_c << "\n" |
| 194 | << "start_row_c : " << start_row_c << "\n" |
| 195 | << "start_col_c : " << start_col_c << "\n" |
| 196 | << "Cref : \n" << C_assign_ref << "\n" |
| 197 | << "C: \n" << C_assign; |
| 198 | } |
| 199 | } |
| 200 | } |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | TEST(BLAS, MatrixVectorMultiply) { |
| 205 | const double kTolerance = 1e-16; |
| 206 | const int kRowA = 5; |
| 207 | const int kColA = 3; |
| 208 | Matrix A(kRowA, kColA); |
| 209 | A.setOnes(); |
| 210 | |
| 211 | Vector b(kColA); |
| 212 | b.setOnes(); |
| 213 | |
| 214 | Vector c(kRowA); |
| 215 | c.setOnes(); |
| 216 | |
| 217 | Vector c_plus = c; |
| 218 | Vector c_minus = c; |
| 219 | Vector c_assign = c; |
| 220 | |
| 221 | Vector c_plus_ref = c; |
| 222 | Vector c_minus_ref = c; |
| 223 | Vector c_assign_ref = c; |
| 224 | |
| 225 | c_plus_ref += A * b; |
| 226 | MatrixVectorMultiply<kRowA, kColA, 1>(A.data(), kRowA, kColA, |
| 227 | b.data(), |
| 228 | c_plus.data()); |
| 229 | EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) |
| 230 | << "c += A * b \n" |
| 231 | << "c_ref : \n" << c_plus_ref << "\n" |
| 232 | << "c: \n" << c_plus; |
| 233 | |
| 234 | c_minus_ref -= A * b; |
| 235 | MatrixVectorMultiply<kRowA, kColA, -1>(A.data(), kRowA, kColA, |
| 236 | b.data(), |
| 237 | c_minus.data()); |
| 238 | EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) |
| 239 | << "c += A * b \n" |
| 240 | << "c_ref : \n" << c_minus_ref << "\n" |
| 241 | << "c: \n" << c_minus; |
| 242 | |
| 243 | c_assign_ref = A * b; |
| 244 | MatrixVectorMultiply<kRowA, kColA, 0>(A.data(), kRowA, kColA, |
| 245 | b.data(), |
| 246 | c_assign.data()); |
| 247 | EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) |
| 248 | << "c += A * b \n" |
| 249 | << "c_ref : \n" << c_assign_ref << "\n" |
| 250 | << "c: \n" << c_assign; |
| 251 | } |
| 252 | |
| 253 | TEST(BLAS, MatrixTransposeVectorMultiply) { |
| 254 | const double kTolerance = 1e-16; |
| 255 | const int kRowA = 5; |
| 256 | const int kColA = 3; |
| 257 | Matrix A(kRowA, kColA); |
| 258 | A.setRandom(); |
| 259 | |
| 260 | Vector b(kRowA); |
| 261 | b.setRandom(); |
| 262 | |
| 263 | Vector c(kColA); |
| 264 | c.setOnes(); |
| 265 | |
| 266 | Vector c_plus = c; |
| 267 | Vector c_minus = c; |
| 268 | Vector c_assign = c; |
| 269 | |
| 270 | Vector c_plus_ref = c; |
| 271 | Vector c_minus_ref = c; |
| 272 | Vector c_assign_ref = c; |
| 273 | |
| 274 | c_plus_ref += A.transpose() * b; |
| 275 | MatrixTransposeVectorMultiply<kRowA, kColA, 1>(A.data(), kRowA, kColA, |
| 276 | b.data(), |
| 277 | c_plus.data()); |
| 278 | EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) |
| 279 | << "c += A' * b \n" |
| 280 | << "c_ref : \n" << c_plus_ref << "\n" |
| 281 | << "c: \n" << c_plus; |
| 282 | |
| 283 | c_minus_ref -= A.transpose() * b; |
| 284 | MatrixTransposeVectorMultiply<kRowA, kColA, -1>(A.data(), kRowA, kColA, |
| 285 | b.data(), |
| 286 | c_minus.data()); |
| 287 | EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) |
| 288 | << "c += A' * b \n" |
| 289 | << "c_ref : \n" << c_minus_ref << "\n" |
| 290 | << "c: \n" << c_minus; |
| 291 | |
| 292 | c_assign_ref = A.transpose() * b; |
| 293 | MatrixTransposeVectorMultiply<kRowA, kColA, 0>(A.data(), kRowA, kColA, |
| 294 | b.data(), |
| 295 | c_assign.data()); |
| 296 | EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) |
| 297 | << "c += A' * b \n" |
| 298 | << "c_ref : \n" << c_assign_ref << "\n" |
| 299 | << "c: \n" << c_assign; |
| 300 | } |
| 301 | |
| 302 | } // namespace internal |
| 303 | } // namespace ceres |