blob: 8544e44d0bc1e7b294e35d73aeb5f0eedf458257 [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// Create CostFunctions as needed by the least squares framework with jacobians
32// computed via numeric (a.k.a. finite) differentiation. For more details see
33// http://en.wikipedia.org/wiki/Numerical_differentiation.
34//
35// To get a numerically differentiated cost function, define a subclass of
36// CostFunction such that the Evaluate() function ignores the jacobian
37// parameter. The numeric differentiation wrapper will fill in the jacobian
38// parameter if nececssary by repeatedly calling the Evaluate() function with
39// small changes to the appropriate parameters, and computing the slope. For
40// performance, the numeric differentiation wrapper class is templated on the
41// concrete cost function, even though it could be implemented only in terms of
42// the virtual CostFunction interface.
43//
44// The numerically differentiated version of a cost function for a cost function
45// can be constructed as follows:
46//
47// CostFunction* cost_function
48// = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
49// new MyCostFunction(...), TAKE_OWNERSHIP);
50//
51// where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8
52// respectively. Look at the tests for a more detailed example.
53//
54// The central difference method is considerably more accurate at the cost of
55// twice as many function evaluations than forward difference. Consider using
56// central differences begin with, and only after that works, trying forward
57// difference to improve performance.
58//
59// TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives.
60
61#ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
62#define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
63
64#include <cstring>
65#include <glog/logging.h>
66#include "Eigen/Dense"
67#include "ceres/internal/scoped_ptr.h"
68#include "ceres/sized_cost_function.h"
69#include "ceres/types.h"
70
71namespace ceres {
72
73enum NumericDiffMethod {
74 CENTRAL,
Sameer Agarwal64472192012-05-03 21:53:07 -070075 FORWARD
Keir Mierle8ebb0732012-04-30 23:09:08 -070076};
77
78// This is split from the main class because C++ doesn't allow partial template
79// specializations for member functions. The alternative is to repeat the main
80// class for differing numbers of parameters, which is also unfortunate.
81template <typename CostFunctionNoJacobian,
82 int num_residuals,
83 int parameter_block_size,
84 int parameter_block,
85 NumericDiffMethod method>
86struct Differencer {
87 // Mutates parameters but must restore them before return.
88 static bool EvaluateJacobianForParameterBlock(
89 const CostFunctionNoJacobian *function,
90 double const* residuals_at_eval_point,
91 double **parameters,
92 double **jacobians) {
93 using Eigen::Map;
94 using Eigen::Matrix;
95 using Eigen::RowMajor;
Sameer Agarwal295ade12012-08-22 06:51:22 -070096 using Eigen::ColMajor;
Keir Mierle8ebb0732012-04-30 23:09:08 -070097
98 typedef Matrix<double, num_residuals, 1> ResidualVector;
99 typedef Matrix<double, parameter_block_size, 1> ParameterVector;
Sameer Agarwal295ade12012-08-22 06:51:22 -0700100 typedef Matrix<double, num_residuals, parameter_block_size,
101 (parameter_block_size == 1 &&
102 num_residuals > 1) ? ColMajor : RowMajor> JacobianMatrix;
Keir Mierle8ebb0732012-04-30 23:09:08 -0700103
104 Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block],
105 num_residuals,
106 parameter_block_size);
107
108 // Mutate 1 element at a time and then restore.
109 Map<ParameterVector> x_plus_delta(parameters[parameter_block],
110 parameter_block_size);
111 ParameterVector x(x_plus_delta);
112
113 // TODO(keir): Pick a smarter number! In theory a good choice is sqrt(eps) *
114 // x, which for doubles means about 1e-8 * x. However, I have found this
115 // number too optimistic. This number should be exposed for users to change.
116 const double kRelativeStepSize = 1e-6;
117
118 ParameterVector step_size = x.array().abs() * kRelativeStepSize;
119
120 // To handle cases where a parameter is exactly zero, instead use the mean
121 // step_size for the other dimensions.
122 double fallback_step_size = step_size.sum() / step_size.rows();
123 if (fallback_step_size == 0.0) {
124 // If all the parameters are zero, there's no good answer. Take
125 // kRelativeStepSize as a guess and hope for the best.
126 fallback_step_size = kRelativeStepSize;
127 }
128
129 // For each parameter in the parameter block, use finite differences to
130 // compute the derivative for that parameter.
131 for (int j = 0; j < parameter_block_size; ++j) {
132 if (step_size(j) == 0.0) {
133 // The parameter is exactly zero, so compromise and use the mean
134 // step_size from the other parameters. This can break in many cases,
135 // but it's hard to pick a good number without problem specific
136 // knowledge.
137 step_size(j) = fallback_step_size;
138 }
139 x_plus_delta(j) = x(j) + step_size(j);
140
141 double residuals[num_residuals]; // NOLINT
142 if (!function->Evaluate(parameters, residuals, NULL)) {
143 // Something went wrong; bail.
144 return false;
145 }
146
147 // Compute this column of the jacobian in 3 steps:
148 // 1. Store residuals for the forward part.
149 // 2. Subtract residuals for the backward (or 0) part.
150 // 3. Divide out the run.
151 parameter_jacobian.col(j) =
152 Map<const ResidualVector>(residuals, num_residuals);
153
154 double one_over_h = 1 / step_size(j);
155 if (method == CENTRAL) {
156 // Compute the function on the other side of x(j).
157 x_plus_delta(j) = x(j) - step_size(j);
158
159 if (!function->Evaluate(parameters, residuals, NULL)) {
160 // Something went wrong; bail.
161 return false;
162 }
163 parameter_jacobian.col(j) -=
164 Map<ResidualVector>(residuals, num_residuals, 1);
165 one_over_h /= 2;
166 } else {
167 // Forward difference only; reuse existing residuals evaluation.
168 parameter_jacobian.col(j) -=
169 Map<const ResidualVector>(residuals_at_eval_point, num_residuals);
170 }
171 x_plus_delta(j) = x(j); // Restore x_plus_delta.
172
173 // Divide out the run to get slope.
174 parameter_jacobian.col(j) *= one_over_h;
175 }
176 return true;
177 }
178};
179
180// Prevent invalid instantiations.
181template <typename CostFunctionNoJacobian,
182 int num_residuals,
183 int parameter_block,
184 NumericDiffMethod method>
185struct Differencer<CostFunctionNoJacobian,
186 num_residuals,
187 0 /* parameter_block_size */,
188 parameter_block,
189 method> {
190 static bool EvaluateJacobianForParameterBlock(
191 const CostFunctionNoJacobian *function,
192 double const* residuals_at_eval_point,
193 double **parameters,
194 double **jacobians) {
195 LOG(FATAL) << "Shouldn't get here.";
196 return true;
197 }
198};
199
200template <typename CostFunctionNoJacobian,
201 NumericDiffMethod method = CENTRAL, int M = 0,
202 int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, int N5 = 0>
203class NumericDiffCostFunction
204 : public SizedCostFunction<M, N0, N1, N2, N3, N4, N5> {
205 public:
206 NumericDiffCostFunction(CostFunctionNoJacobian* function,
207 Ownership ownership)
208 : function_(function), ownership_(ownership) {}
209
210 virtual ~NumericDiffCostFunction() {
211 if (ownership_ != TAKE_OWNERSHIP) {
212 function_.release();
213 }
214 }
215
216 virtual bool Evaluate(double const* const* parameters,
217 double* residuals,
218 double** jacobians) const {
219 // Get the function value (residuals) at the the point to evaluate.
220 bool success = function_->Evaluate(parameters, residuals, NULL);
221 if (!success) {
222 // Something went wrong; ignore the jacobian.
223 return false;
224 }
225 if (!jacobians) {
226 // Nothing to do; just forward.
227 return true;
228 }
229
230 // Create a copy of the parameters which will get mutated.
231 const int kParametersSize = N0 + N1 + N2 + N3 + N4 + N5;
232 double parameters_copy[kParametersSize];
233 double *parameters_references_copy[6];
234 parameters_references_copy[0] = &parameters_copy[0];
235 parameters_references_copy[1] = &parameters_copy[0] + N0;
236 parameters_references_copy[2] = &parameters_copy[0] + N0 + N1;
237 parameters_references_copy[3] = &parameters_copy[0] + N0 + N1 + N2;
238 parameters_references_copy[4] = &parameters_copy[0] + N0 + N1 + N2 + N3;
239 parameters_references_copy[5] =
240 &parameters_copy[0] + N0 + N1 + N2 + N3 + N4;
241
242#define COPY_PARAMETER_BLOCK(block) \
243 if (N ## block) memcpy(parameters_references_copy[block], \
244 parameters[block], \
245 sizeof(double) * N ## block); // NOLINT
246 COPY_PARAMETER_BLOCK(0);
247 COPY_PARAMETER_BLOCK(1);
248 COPY_PARAMETER_BLOCK(2);
249 COPY_PARAMETER_BLOCK(3);
250 COPY_PARAMETER_BLOCK(4);
251 COPY_PARAMETER_BLOCK(5);
252#undef COPY_PARAMETER_BLOCK
253
254#define EVALUATE_JACOBIAN_FOR_BLOCK(block) \
255 if (N ## block && jacobians[block]) { \
256 if (!Differencer<CostFunctionNoJacobian, /* NOLINT */ \
257 M, \
258 N ## block, \
259 block, \
260 method>::EvaluateJacobianForParameterBlock( \
261 function_.get(), \
262 residuals, \
263 parameters_references_copy, \
264 jacobians)) { \
265 return false; \
266 } \
267 }
268 EVALUATE_JACOBIAN_FOR_BLOCK(0);
269 EVALUATE_JACOBIAN_FOR_BLOCK(1);
270 EVALUATE_JACOBIAN_FOR_BLOCK(2);
271 EVALUATE_JACOBIAN_FOR_BLOCK(3);
272 EVALUATE_JACOBIAN_FOR_BLOCK(4);
273 EVALUATE_JACOBIAN_FOR_BLOCK(5);
274#undef EVALUATE_JACOBIAN_FOR_BLOCK
275 return true;
276 }
277
278 private:
279 internal::scoped_ptr<CostFunctionNoJacobian> function_;
280 Ownership ownership_;
281};
282
283} // namespace ceres
284
285#endif // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_