Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: David Gallup (dgallup@google.com) |
| 30 | // Sameer Agarwal (sameeragarwal@google.com) |
| 31 | |
Sameer Agarwal | 8140f0f | 2013-03-12 09:45:08 -0700 | [diff] [blame] | 32 | #ifndef CERES_NO_SUITESPARSE |
| 33 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 34 | #include "ceres/canonical_views_clustering.h" |
| 35 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 36 | #include "ceres/collections_port.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 37 | #include "ceres/graph.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 38 | #include "ceres/internal/macros.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 39 | #include "ceres/map_util.h" |
| 40 | #include "glog/logging.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 41 | |
| 42 | namespace ceres { |
| 43 | namespace internal { |
| 44 | |
| 45 | typedef HashMap<int, int> IntMap; |
| 46 | typedef HashSet<int> IntSet; |
| 47 | |
| 48 | class CanonicalViewsClustering { |
| 49 | public: |
| 50 | CanonicalViewsClustering() {} |
| 51 | |
| 52 | // Compute the canonical views clustering of the vertices of the |
| 53 | // graph. centers will contain the vertices that are the identified |
| 54 | // as the canonical views/cluster centers, and membership is a map |
| 55 | // from vertices to cluster_ids. The i^th cluster center corresponds |
| 56 | // to the i^th cluster. It is possible depending on the |
| 57 | // configuration of the clustering algorithm that some of the |
| 58 | // vertices may not be assigned to any cluster. In this case they |
| 59 | // are assigned to a cluster with id = kInvalidClusterId. |
| 60 | void ComputeClustering(const Graph<int>& graph, |
| 61 | const CanonicalViewsClusteringOptions& options, |
| 62 | vector<int>* centers, |
| 63 | IntMap* membership); |
| 64 | |
| 65 | private: |
| 66 | void FindValidViews(IntSet* valid_views) const; |
| 67 | double ComputeClusteringQualityDifference(const int candidate, |
| 68 | const vector<int>& centers) const; |
| 69 | void UpdateCanonicalViewAssignments(const int canonical_view); |
| 70 | void ComputeClusterMembership(const vector<int>& centers, |
| 71 | IntMap* membership) const; |
| 72 | |
| 73 | CanonicalViewsClusteringOptions options_; |
| 74 | const Graph<int>* graph_; |
| 75 | // Maps a view to its representative canonical view (its cluster |
| 76 | // center). |
| 77 | IntMap view_to_canonical_view_; |
| 78 | // Maps a view to its similarity to its current cluster center. |
| 79 | HashMap<int, double> view_to_canonical_view_similarity_; |
Sameer Agarwal | 237d659 | 2012-05-30 20:34:49 -0700 | [diff] [blame] | 80 | CERES_DISALLOW_COPY_AND_ASSIGN(CanonicalViewsClustering); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 81 | }; |
| 82 | |
| 83 | void ComputeCanonicalViewsClustering( |
| 84 | const Graph<int>& graph, |
| 85 | const CanonicalViewsClusteringOptions& options, |
| 86 | vector<int>* centers, |
| 87 | IntMap* membership) { |
| 88 | time_t start_time = time(NULL); |
| 89 | CanonicalViewsClustering cv; |
| 90 | cv.ComputeClustering(graph, options, centers, membership); |
| 91 | VLOG(2) << "Canonical views clustering time (secs): " |
| 92 | << time(NULL) - start_time; |
| 93 | } |
| 94 | |
| 95 | // Implementation of CanonicalViewsClustering |
| 96 | void CanonicalViewsClustering::ComputeClustering( |
| 97 | const Graph<int>& graph, |
| 98 | const CanonicalViewsClusteringOptions& options, |
| 99 | vector<int>* centers, |
| 100 | IntMap* membership) { |
| 101 | options_ = options; |
| 102 | CHECK_NOTNULL(centers)->clear(); |
| 103 | CHECK_NOTNULL(membership)->clear(); |
| 104 | graph_ = &graph; |
| 105 | |
| 106 | IntSet valid_views; |
| 107 | FindValidViews(&valid_views); |
| 108 | while (valid_views.size() > 0) { |
| 109 | // Find the next best canonical view. |
| 110 | double best_difference = -std::numeric_limits<double>::max(); |
| 111 | int best_view = 0; |
| 112 | |
| 113 | // TODO(sameeragarwal): Make this loop multi-threaded. |
| 114 | for (IntSet::const_iterator view = valid_views.begin(); |
| 115 | view != valid_views.end(); |
| 116 | ++view) { |
| 117 | const double difference = |
| 118 | ComputeClusteringQualityDifference(*view, *centers); |
| 119 | if (difference > best_difference) { |
| 120 | best_difference = difference; |
| 121 | best_view = *view; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | CHECK_GT(best_difference, -std::numeric_limits<double>::max()); |
| 126 | |
| 127 | // Add canonical view if quality improves, or if minimum is not |
| 128 | // yet met, otherwise break. |
| 129 | if ((best_difference <= 0) && |
| 130 | (centers->size() >= options_.min_views)) { |
| 131 | break; |
| 132 | } |
| 133 | |
| 134 | centers->push_back(best_view); |
| 135 | valid_views.erase(best_view); |
| 136 | UpdateCanonicalViewAssignments(best_view); |
| 137 | } |
| 138 | |
| 139 | ComputeClusterMembership(*centers, membership); |
| 140 | } |
| 141 | |
| 142 | // Return the set of vertices of the graph which have valid vertex |
| 143 | // weights. |
| 144 | void CanonicalViewsClustering::FindValidViews( |
| 145 | IntSet* valid_views) const { |
| 146 | const IntSet& views = graph_->vertices(); |
| 147 | for (IntSet::const_iterator view = views.begin(); |
| 148 | view != views.end(); |
| 149 | ++view) { |
| 150 | if (graph_->VertexWeight(*view) != Graph<int>::InvalidWeight()) { |
| 151 | valid_views->insert(*view); |
| 152 | } |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | // Computes the difference in the quality score if 'candidate' were |
| 157 | // added to the set of canonical views. |
| 158 | double CanonicalViewsClustering::ComputeClusteringQualityDifference( |
| 159 | const int candidate, |
| 160 | const vector<int>& centers) const { |
| 161 | // View score. |
| 162 | double difference = |
| 163 | options_.view_score_weight * graph_->VertexWeight(candidate); |
| 164 | |
| 165 | // Compute how much the quality score changes if the candidate view |
| 166 | // was added to the list of canonical views and its nearest |
| 167 | // neighbors became members of its cluster. |
| 168 | const IntSet& neighbors = graph_->Neighbors(candidate); |
| 169 | for (IntSet::const_iterator neighbor = neighbors.begin(); |
| 170 | neighbor != neighbors.end(); |
| 171 | ++neighbor) { |
| 172 | const double old_similarity = |
| 173 | FindWithDefault(view_to_canonical_view_similarity_, *neighbor, 0.0); |
| 174 | const double new_similarity = graph_->EdgeWeight(*neighbor, candidate); |
| 175 | if (new_similarity > old_similarity) { |
| 176 | difference += new_similarity - old_similarity; |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | // Number of views penalty. |
| 181 | difference -= options_.size_penalty_weight; |
| 182 | |
| 183 | // Orthogonality. |
| 184 | for (int i = 0; i < centers.size(); ++i) { |
| 185 | difference -= options_.similarity_penalty_weight * |
| 186 | graph_->EdgeWeight(centers[i], candidate); |
| 187 | } |
| 188 | |
| 189 | return difference; |
| 190 | } |
| 191 | |
| 192 | // Reassign views if they're more similar to the new canonical view. |
| 193 | void CanonicalViewsClustering::UpdateCanonicalViewAssignments( |
| 194 | const int canonical_view) { |
| 195 | const IntSet& neighbors = graph_->Neighbors(canonical_view); |
| 196 | for (IntSet::const_iterator neighbor = neighbors.begin(); |
| 197 | neighbor != neighbors.end(); |
| 198 | ++neighbor) { |
| 199 | const double old_similarity = |
| 200 | FindWithDefault(view_to_canonical_view_similarity_, *neighbor, 0.0); |
| 201 | const double new_similarity = |
| 202 | graph_->EdgeWeight(*neighbor, canonical_view); |
| 203 | if (new_similarity > old_similarity) { |
| 204 | view_to_canonical_view_[*neighbor] = canonical_view; |
| 205 | view_to_canonical_view_similarity_[*neighbor] = new_similarity; |
| 206 | } |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | // Assign a cluster id to each view. |
| 211 | void CanonicalViewsClustering::ComputeClusterMembership( |
| 212 | const vector<int>& centers, |
| 213 | IntMap* membership) const { |
| 214 | CHECK_NOTNULL(membership)->clear(); |
| 215 | |
| 216 | // The i^th cluster has cluster id i. |
| 217 | IntMap center_to_cluster_id; |
| 218 | for (int i = 0; i < centers.size(); ++i) { |
| 219 | center_to_cluster_id[centers[i]] = i; |
| 220 | } |
| 221 | |
| 222 | static const int kInvalidClusterId = -1; |
| 223 | |
| 224 | const IntSet& views = graph_->vertices(); |
| 225 | for (IntSet::const_iterator view = views.begin(); |
| 226 | view != views.end(); |
| 227 | ++view) { |
| 228 | IntMap::const_iterator it = |
| 229 | view_to_canonical_view_.find(*view); |
| 230 | int cluster_id = kInvalidClusterId; |
| 231 | if (it != view_to_canonical_view_.end()) { |
| 232 | cluster_id = FindOrDie(center_to_cluster_id, it->second); |
| 233 | } |
| 234 | |
| 235 | InsertOrDie(membership, *view, cluster_id); |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | } // namespace internal |
| 240 | } // namespace ceres |
Sameer Agarwal | 8140f0f | 2013-03-12 09:45:08 -0700 | [diff] [blame] | 241 | |
| 242 | #endif // CERES_NO_SUITESPARSE |