Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | |
| 31 | syntax = "proto2"; |
| 32 | |
| 33 | package ceres.internal; |
| 34 | |
| 35 | message BlockProto { |
| 36 | // The span of the block. |
| 37 | optional int32 size = 1; |
| 38 | |
| 39 | // Position along the row or column (depending on storage orientation). |
| 40 | optional int32 position = 2; |
| 41 | } |
| 42 | |
| 43 | message CellProto { |
| 44 | // Column or row block id as appropriate. |
| 45 | optional int32 block_id = 1; |
| 46 | |
| 47 | // Position in the values array the cell is located. Each cell is stored as a |
| 48 | // row-major chunk inside the values array. |
| 49 | optional int32 position = 2; |
| 50 | } |
| 51 | |
| 52 | // A single row or column, depending on the matrix type. |
| 53 | message CompressedRowProto { |
| 54 | optional BlockProto block = 2; |
| 55 | repeated CellProto cells = 1; |
| 56 | } |
| 57 | |
| 58 | message BlockStructureProto { |
| 59 | repeated BlockProto cols = 1; |
| 60 | repeated CompressedRowProto rows = 2; |
| 61 | } |
| 62 | |
| 63 | // A block sparse matrix, either in column major or row major format. |
| 64 | message BlockSparseMatrixProto { |
| 65 | optional int64 num_rows = 2; |
| 66 | optional int64 num_cols = 3; |
| 67 | optional int64 num_nonzeros = 4; |
| 68 | repeated double values = 1 [packed=true]; |
| 69 | |
| 70 | optional BlockStructureProto block_structure = 5; |
| 71 | } |
| 72 | |
| 73 | message TripletSparseMatrixProto { |
| 74 | optional int64 num_rows = 4; |
| 75 | optional int64 num_cols = 5; |
| 76 | optional int64 num_nonzeros = 6; |
| 77 | |
| 78 | // The data is stored as three arrays. For each i, values(i) is stored at the |
| 79 | // location (rows(i), cols(i)). If the there are multiple entries with the |
| 80 | // same (rows(i), cols(i)), the values entries corresponding to them are |
| 81 | // summed up. |
| 82 | repeated int64 rows = 1 [packed=true]; |
| 83 | repeated int64 cols = 2 [packed=true]; |
| 84 | repeated double values = 3 [packed=true]; |
| 85 | } |
| 86 | |
| 87 | message CompressedRowSparseMatrixProto { |
| 88 | optional int64 num_rows = 4; |
| 89 | optional int64 num_cols = 5; |
| 90 | |
| 91 | repeated int64 rows = 1 [packed=true]; |
| 92 | repeated int64 cols = 2 [packed=true]; |
| 93 | repeated double values = 3 [packed=true]; |
| 94 | } |
| 95 | |
| 96 | message DenseSparseMatrixProto { |
| 97 | optional int64 num_rows = 1; |
| 98 | optional int64 num_cols = 2; |
| 99 | |
| 100 | // Entries are stored in row-major order. |
| 101 | repeated double values = 3 [packed=true]; |
| 102 | } |
| 103 | |
| 104 | // A sparse matrix. It is a union; only one field is permitted. If new sparse |
| 105 | // implementations are added, update this proto accordingly. |
| 106 | message SparseMatrixProto { |
| 107 | optional TripletSparseMatrixProto triplet_matrix = 1; |
| 108 | optional BlockSparseMatrixProto block_matrix = 2; |
| 109 | optional CompressedRowSparseMatrixProto compressed_row_matrix = 3; |
| 110 | optional DenseSparseMatrixProto dense_matrix = 4; |
| 111 | } |
| 112 | |
| 113 | // A linear least squares problem. |
| 114 | // |
| 115 | // Given a matrix A, an optional diagonal matrix D as a vector, and a vector b, |
| 116 | // the proto represents the following linear least squares problem. |
| 117 | // |
| 118 | // | A | x = | b | |
| 119 | // | D | | 0 | |
| 120 | // |
| 121 | // If D is empty, then the problem is considered to be |
| 122 | // |
| 123 | // A x = b |
| 124 | // |
| 125 | // The desired solution for the problem is the vector x that solves the |
| 126 | // following optimization problem: |
| 127 | // |
| 128 | // arg min_x ||Ax - b||^2 + ||Dx||^2 |
| 129 | // |
| 130 | // If x is present, then it is the expected solution to the |
| 131 | // problem. The dimensions of A, b, x, and D should be consistent. |
| 132 | message LinearLeastSquaresProblemProto { |
| 133 | optional SparseMatrixProto a = 1; |
| 134 | repeated double b = 2 [packed=true]; |
| 135 | repeated double d = 3 [packed=true]; |
| 136 | repeated double x = 4 [packed=true]; |
| 137 | // If the problem is of SfM type, i.e it has a generalized |
| 138 | // bi-partite structure, then num_eliminate_blocks is the number of |
| 139 | // column blocks that are to eliminated in the formation of the |
| 140 | // Schur complement. For more details see |
| 141 | // explicit_schur_complement_solver.h. |
| 142 | optional int32 num_eliminate_blocks = 5; |
| 143 | } |