Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | |
| 31 | #include "ceres/gradient_checking_cost_function.h" |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include <cmath> |
| 35 | #include <numeric> |
| 36 | #include <string> |
| 37 | #include <vector> |
| 38 | |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 39 | #include "ceres/cost_function.h" |
| 40 | #include "ceres/internal/eigen.h" |
| 41 | #include "ceres/internal/scoped_ptr.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 42 | #include "ceres/parameter_block.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 43 | #include "ceres/problem.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 44 | #include "ceres/problem_impl.h" |
| 45 | #include "ceres/program.h" |
| 46 | #include "ceres/residual_block.h" |
Sameer Agarwal | 35ee1f7 | 2013-10-09 10:12:43 -0700 | [diff] [blame] | 47 | #include "ceres/dynamic_numeric_diff_cost_function.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 48 | #include "ceres/stringprintf.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 49 | #include "ceres/types.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 50 | #include "glog/logging.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 51 | |
| 52 | namespace ceres { |
| 53 | namespace internal { |
| 54 | namespace { |
| 55 | |
| 56 | // True if x and y have an absolute relative difference less than |
| 57 | // relative_precision and false otherwise. Stores the relative and absolute |
| 58 | // difference in relative/absolute_error if non-NULL. |
| 59 | bool IsClose(double x, double y, double relative_precision, |
| 60 | double *relative_error, |
| 61 | double *absolute_error) { |
| 62 | double local_absolute_error; |
| 63 | double local_relative_error; |
| 64 | if (!absolute_error) { |
| 65 | absolute_error = &local_absolute_error; |
| 66 | } |
| 67 | if (!relative_error) { |
| 68 | relative_error = &local_relative_error; |
| 69 | } |
| 70 | *absolute_error = fabs(x - y); |
| 71 | *relative_error = *absolute_error / max(fabs(x), fabs(y)); |
| 72 | if (x == 0 || y == 0) { |
| 73 | // If x or y is exactly zero, then relative difference doesn't have any |
| 74 | // meaning. Take the absolute difference instead. |
| 75 | *relative_error = *absolute_error; |
| 76 | } |
| 77 | return fabs(*relative_error) < fabs(relative_precision); |
| 78 | } |
| 79 | |
| 80 | class GradientCheckingCostFunction : public CostFunction { |
| 81 | public: |
| 82 | GradientCheckingCostFunction(const CostFunction* function, |
| 83 | double relative_step_size, |
| 84 | double relative_precision, |
| 85 | const string& extra_info) |
| 86 | : function_(function), |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 87 | relative_precision_(relative_precision), |
| 88 | extra_info_(extra_info) { |
Sameer Agarwal | 35ee1f7 | 2013-10-09 10:12:43 -0700 | [diff] [blame] | 89 | DynamicNumericDiffCostFunction<CostFunction, CENTRAL>* |
| 90 | finite_diff_cost_function = |
| 91 | new DynamicNumericDiffCostFunction<CostFunction, CENTRAL>( |
| 92 | function, |
| 93 | DO_NOT_TAKE_OWNERSHIP, |
| 94 | relative_step_size); |
| 95 | |
| 96 | const vector<int16>& parameter_block_sizes = |
| 97 | function->parameter_block_sizes(); |
| 98 | for (int i = 0; i < parameter_block_sizes.size(); ++i) { |
| 99 | finite_diff_cost_function->AddParameterBlock(parameter_block_sizes[i]); |
| 100 | } |
| 101 | *mutable_parameter_block_sizes() = parameter_block_sizes; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 102 | set_num_residuals(function->num_residuals()); |
Sameer Agarwal | 35ee1f7 | 2013-10-09 10:12:43 -0700 | [diff] [blame] | 103 | finite_diff_cost_function->SetNumResiduals(num_residuals()); |
| 104 | finite_diff_cost_function_.reset(finite_diff_cost_function); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 105 | } |
| 106 | |
| 107 | virtual ~GradientCheckingCostFunction() { } |
| 108 | |
| 109 | virtual bool Evaluate(double const* const* parameters, |
| 110 | double* residuals, |
| 111 | double** jacobians) const { |
| 112 | if (!jacobians) { |
| 113 | // Nothing to check in this case; just forward. |
| 114 | return function_->Evaluate(parameters, residuals, NULL); |
| 115 | } |
| 116 | |
| 117 | int num_residuals = function_->num_residuals(); |
| 118 | |
| 119 | // Make space for the jacobians of the two methods. |
| 120 | const vector<int16>& block_sizes = function_->parameter_block_sizes(); |
| 121 | vector<Matrix> term_jacobians(block_sizes.size()); |
| 122 | vector<Matrix> finite_difference_jacobians(block_sizes.size()); |
| 123 | vector<double*> term_jacobian_pointers(block_sizes.size()); |
| 124 | vector<double*> finite_difference_jacobian_pointers(block_sizes.size()); |
| 125 | for (int i = 0; i < block_sizes.size(); i++) { |
| 126 | term_jacobians[i].resize(num_residuals, block_sizes[i]); |
| 127 | term_jacobian_pointers[i] = term_jacobians[i].data(); |
| 128 | finite_difference_jacobians[i].resize(num_residuals, block_sizes[i]); |
| 129 | finite_difference_jacobian_pointers[i] = |
| 130 | finite_difference_jacobians[i].data(); |
| 131 | } |
| 132 | |
| 133 | // Evaluate the derivative using the user supplied code. |
| 134 | if (!function_->Evaluate(parameters, |
| 135 | residuals, |
| 136 | &term_jacobian_pointers[0])) { |
| 137 | LOG(WARNING) << "Function evaluation failed."; |
| 138 | return false; |
| 139 | } |
| 140 | |
| 141 | // Evaluate the derivative using numeric derivatives. |
| 142 | finite_diff_cost_function_->Evaluate( |
| 143 | parameters, |
| 144 | residuals, |
| 145 | &finite_difference_jacobian_pointers[0]); |
| 146 | |
| 147 | // See if any elements have relative error larger than the threshold. |
| 148 | int num_bad_jacobian_components = 0; |
| 149 | double worst_relative_error = 0; |
| 150 | |
| 151 | // Accumulate the error message for all the jacobians, since it won't get |
| 152 | // output if there are no bad jacobian components. |
| 153 | string m; |
| 154 | for (int k = 0; k < block_sizes.size(); k++) { |
| 155 | // Copy the original jacobian blocks into the jacobians array. |
| 156 | if (jacobians[k] != NULL) { |
| 157 | MatrixRef(jacobians[k], |
| 158 | term_jacobians[k].rows(), |
| 159 | term_jacobians[k].cols()) = term_jacobians[k]; |
| 160 | } |
| 161 | |
| 162 | StringAppendF(&m, |
| 163 | "========== " |
| 164 | "Jacobian for " "block %d: (%ld by %ld)) " |
| 165 | "==========\n", |
| 166 | k, |
Sameer Agarwal | 3dadfb7 | 2012-10-30 17:41:50 -0700 | [diff] [blame] | 167 | static_cast<long>(term_jacobians[k].rows()), |
| 168 | static_cast<long>(term_jacobians[k].cols())); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 169 | // The funny spacing creates appropriately aligned column headers. |
| 170 | m += " block row col user dx/dy num diff dx/dy " |
| 171 | "abs error relative error parameter residual\n"; |
| 172 | |
| 173 | for (int i = 0; i < term_jacobians[k].rows(); i++) { |
| 174 | for (int j = 0; j < term_jacobians[k].cols(); j++) { |
| 175 | double term_jacobian = term_jacobians[k](i, j); |
| 176 | double finite_jacobian = finite_difference_jacobians[k](i, j); |
| 177 | double relative_error, absolute_error; |
| 178 | bool bad_jacobian_entry = |
| 179 | !IsClose(term_jacobian, |
| 180 | finite_jacobian, |
| 181 | relative_precision_, |
| 182 | &relative_error, |
| 183 | &absolute_error); |
| 184 | worst_relative_error = std::max(worst_relative_error, |
| 185 | relative_error); |
| 186 | |
| 187 | StringAppendF(&m, "%6d %4d %4d %17g %17g %17g %17g %17g %17g", |
| 188 | k, i, j, |
| 189 | term_jacobian, finite_jacobian, |
| 190 | absolute_error, relative_error, |
| 191 | parameters[k][j], |
| 192 | residuals[i]); |
| 193 | |
| 194 | if (bad_jacobian_entry) { |
| 195 | num_bad_jacobian_components++; |
| 196 | StringAppendF( |
| 197 | &m, " ------ (%d,%d,%d) Relative error worse than %g", |
| 198 | k, i, j, relative_precision_); |
| 199 | } |
| 200 | m += "\n"; |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | // Since there were some bad errors, dump comprehensive debug info. |
| 206 | if (num_bad_jacobian_components) { |
| 207 | string header = StringPrintf("Detected %d bad jacobian component(s). " |
| 208 | "Worst relative error was %g.\n", |
| 209 | num_bad_jacobian_components, |
| 210 | worst_relative_error); |
| 211 | if (!extra_info_.empty()) { |
| 212 | header += "Extra info for this residual: " + extra_info_ + "\n"; |
| 213 | } |
| 214 | LOG(WARNING) << "\n" << header << m; |
| 215 | } |
| 216 | return true; |
| 217 | } |
| 218 | |
| 219 | private: |
| 220 | const CostFunction* function_; |
| 221 | internal::scoped_ptr<CostFunction> finite_diff_cost_function_; |
| 222 | double relative_precision_; |
| 223 | string extra_info_; |
| 224 | }; |
| 225 | |
| 226 | } // namespace |
| 227 | |
| 228 | CostFunction *CreateGradientCheckingCostFunction( |
| 229 | const CostFunction *cost_function, |
| 230 | double relative_step_size, |
| 231 | double relative_precision, |
| 232 | const string& extra_info) { |
| 233 | return new GradientCheckingCostFunction(cost_function, |
| 234 | relative_step_size, |
| 235 | relative_precision, |
| 236 | extra_info); |
| 237 | } |
| 238 | |
| 239 | ProblemImpl* CreateGradientCheckingProblemImpl(ProblemImpl* problem_impl, |
| 240 | double relative_step_size, |
| 241 | double relative_precision) { |
| 242 | // We create new CostFunctions by wrapping the original CostFunction |
| 243 | // in a gradient checking CostFunction. So its okay for the |
| 244 | // ProblemImpl to take ownership of it and destroy it. The |
| 245 | // LossFunctions and LocalParameterizations are reused and since |
| 246 | // they are owned by problem_impl, gradient_checking_problem_impl |
| 247 | // should not take ownership of it. |
| 248 | Problem::Options gradient_checking_problem_options; |
| 249 | gradient_checking_problem_options.cost_function_ownership = TAKE_OWNERSHIP; |
| 250 | gradient_checking_problem_options.loss_function_ownership = |
| 251 | DO_NOT_TAKE_OWNERSHIP; |
| 252 | gradient_checking_problem_options.local_parameterization_ownership = |
| 253 | DO_NOT_TAKE_OWNERSHIP; |
| 254 | |
| 255 | ProblemImpl* gradient_checking_problem_impl = new ProblemImpl( |
| 256 | gradient_checking_problem_options); |
| 257 | |
| 258 | Program* program = problem_impl->mutable_program(); |
| 259 | |
| 260 | // For every ParameterBlock in problem_impl, create a new parameter |
| 261 | // block with the same local parameterization and constancy. |
| 262 | const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks(); |
| 263 | for (int i = 0; i < parameter_blocks.size(); ++i) { |
| 264 | ParameterBlock* parameter_block = parameter_blocks[i]; |
| 265 | gradient_checking_problem_impl->AddParameterBlock( |
| 266 | parameter_block->mutable_user_state(), |
| 267 | parameter_block->Size(), |
| 268 | parameter_block->mutable_local_parameterization()); |
| 269 | |
| 270 | if (parameter_block->IsConstant()) { |
| 271 | gradient_checking_problem_impl->SetParameterBlockConstant( |
| 272 | parameter_block->mutable_user_state()); |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | // For every ResidualBlock in problem_impl, create a new |
| 277 | // ResidualBlock by wrapping its CostFunction inside a |
| 278 | // GradientCheckingCostFunction. |
| 279 | const vector<ResidualBlock*>& residual_blocks = program->residual_blocks(); |
| 280 | for (int i = 0; i < residual_blocks.size(); ++i) { |
| 281 | ResidualBlock* residual_block = residual_blocks[i]; |
| 282 | |
| 283 | // Build a human readable string which identifies the |
| 284 | // ResidualBlock. This is used by the GradientCheckingCostFunction |
| 285 | // when logging debugging information. |
| 286 | string extra_info = StringPrintf( |
| 287 | "Residual block id %d; depends on parameters [", i); |
| 288 | vector<double*> parameter_blocks; |
| 289 | for (int j = 0; j < residual_block->NumParameterBlocks(); ++j) { |
| 290 | ParameterBlock* parameter_block = residual_block->parameter_blocks()[j]; |
| 291 | parameter_blocks.push_back(parameter_block->mutable_user_state()); |
| 292 | StringAppendF(&extra_info, "%p", parameter_block->mutable_user_state()); |
| 293 | extra_info += (j < residual_block->NumParameterBlocks() - 1) ? ", " : "]"; |
| 294 | } |
| 295 | |
| 296 | // Wrap the original CostFunction in a GradientCheckingCostFunction. |
| 297 | CostFunction* gradient_checking_cost_function = |
| 298 | CreateGradientCheckingCostFunction(residual_block->cost_function(), |
| 299 | relative_step_size, |
| 300 | relative_precision, |
| 301 | extra_info); |
| 302 | |
| 303 | // The const_cast is necessary because |
| 304 | // ProblemImpl::AddResidualBlock can potentially take ownership of |
| 305 | // the LossFunction, but in this case we are guaranteed that this |
| 306 | // will not be the case, so this const_cast is harmless. |
| 307 | gradient_checking_problem_impl->AddResidualBlock( |
| 308 | gradient_checking_cost_function, |
| 309 | const_cast<LossFunction*>(residual_block->loss_function()), |
| 310 | parameter_blocks); |
| 311 | } |
| 312 | |
| 313 | return gradient_checking_problem_impl; |
| 314 | } |
| 315 | |
| 316 | |
| 317 | } // namespace internal |
| 318 | } // namespace ceres |