blob: 6926d28bd0cff88b2cde459c0d4e223c94ff91f2 [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// Based on the tests in numeric_diff_cost_function.cc.
32//
33// TODO(keir): See about code duplication.
34
35#include "ceres/runtime_numeric_diff_cost_function.h"
36
37#include <algorithm>
38#include <cmath>
39#include <string>
40#include <vector>
41
42#include <glog/logging.h>
43#include "gtest/gtest.h"
44#include "ceres/stringprintf.h"
45#include "ceres/test_util.h"
46#include "ceres/cost_function.h"
47#include "ceres/internal/macros.h"
48#include "ceres/internal/scoped_ptr.h"
49
50namespace ceres {
51namespace internal {
52
53const double kRelativeEps = 1e-6;
54
55// y1 = x1'x2 -> dy1/dx1 = x2, dy1/dx2 = x1
56// y2 = (x1'x2)^2 -> dy2/dx1 = 2 * x2 * (x1'x2), dy2/dx2 = 2 * x1 * (x1'x2)
57// y3 = x2'x2 -> dy3/dx1 = 0, dy3/dx2 = 2 * x2
58class TestCostFunction : public CostFunction {
59 public:
60 TestCostFunction() {
61 set_num_residuals(3);
62 mutable_parameter_block_sizes()->push_back(5); // x1.
63 mutable_parameter_block_sizes()->push_back(5); // x2.
64 }
65 virtual bool Evaluate(double const* const* parameters,
66 double* residuals,
67 double** jacobians) const {
68 (void) jacobians; // Ignored.
69
70 residuals[0] = residuals[1] = residuals[2] = 0;
71 for (int i = 0; i < 5; ++i) {
72 residuals[0] += parameters[0][i] * parameters[1][i];
73 residuals[2] += parameters[1][i] * parameters[1][i];
74 }
75 residuals[1] = residuals[0] * residuals[0];
76 return true;
77 }
78};
79
80TEST(NumericDiffCostFunction, EasyCase) {
81 // Try both central and forward difference.
82 TestCostFunction term;
83 scoped_ptr<CostFunction> cfs[2];
84 cfs[0].reset(
85 CreateRuntimeNumericDiffCostFunction(&term, CENTRAL, kRelativeEps));
86
87 cfs[1].reset(
88 CreateRuntimeNumericDiffCostFunction(&term, FORWARD, kRelativeEps));
89
90
91 for (int c = 0; c < 2; ++c) {
92 CostFunction *cost_function = cfs[c].get();
93
94 double x1[] = { 1.0, 2.0, 3.0, 4.0, 5.0 };
95 double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 };
96 double *parameters[] = { &x1[0], &x2[0] };
97
98 double dydx1[15]; // 3 x 5, row major.
99 double dydx2[15]; // 3 x 5, row major.
100 double *jacobians[2] = { &dydx1[0], &dydx2[0] };
101
102 double residuals[3] = {-1e-100, -2e-100, -3e-100 };
103
104 ASSERT_TRUE(cost_function->Evaluate(&parameters[0],
105 &residuals[0],
106 &jacobians[0]));
107
108 EXPECT_EQ(residuals[0], 67);
109 EXPECT_EQ(residuals[1], 4489);
110 EXPECT_EQ(residuals[2], 213);
111
112 for (int i = 0; i < 5; ++i) {
113 LOG(INFO) << "c = " << c << " i = " << i;
114 const double kEps = c == 0 ? /* central */ 3e-9 : /* forward */ 2e-5;
115
116 ExpectClose(x2[i], dydx1[5 * 0 + i], kEps); // y1
117 ExpectClose(x1[i], dydx2[5 * 0 + i], kEps);
118 ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], kEps); // y2
119 ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], kEps);
120 ExpectClose(0.0, dydx1[5 * 2 + i], kEps); // y3
121 ExpectClose(2 * x2[i], dydx2[5 * 2 + i], kEps);
122 }
123 }
124}
125
126// y1 = sin(x1'x2)
127// y2 = exp(-x1'x2 / 10)
128//
129// dy1/dx1 = x2 * cos(x1'x2), dy1/dx2 = x1 * cos(x1'x2)
130// dy2/dx1 = -x2 * exp(-x1'x2 / 10) / 10, dy2/dx2 = -x2 * exp(-x1'x2 / 10) / 10
131class TranscendentalTestCostFunction : public CostFunction {
132 public:
133 TranscendentalTestCostFunction() {
134 set_num_residuals(2);
135 mutable_parameter_block_sizes()->push_back(5); // x1.
136 mutable_parameter_block_sizes()->push_back(5); // x2.
137 }
138 virtual bool Evaluate(double const* const* parameters,
139 double* residuals,
140 double** jacobians) const {
141 (void) jacobians; // Ignored.
142
143 double x1x2 = 0;
144 for (int i = 0; i < 5; ++i) {
145 x1x2 += parameters[0][i] * parameters[1][i];
146 }
147 residuals[0] = sin(x1x2);
148 residuals[1] = exp(-x1x2 / 10);
149 return true;
150 }
151};
152
153TEST(NumericDiffCostFunction, TransendentalOperationsInCostFunction) {
154 // Try both central and forward difference.
155 TranscendentalTestCostFunction term;
156 scoped_ptr<CostFunction> cfs[2];
157 cfs[0].reset(
158 CreateRuntimeNumericDiffCostFunction(&term, CENTRAL, kRelativeEps));
159
160 cfs[1].reset(
161 CreateRuntimeNumericDiffCostFunction(&term, FORWARD, kRelativeEps));
162
163 for (int c = 0; c < 2; ++c) {
164 CostFunction *cost_function = cfs[c].get();
165
166 struct {
167 double x1[5];
168 double x2[5];
169 } kTests[] = {
170 { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // No zeros.
171 { 9.0, 9.0, 5.0, 5.0, 1.0 },
172 },
173 { { 0.0, 2.0, 3.0, 0.0, 5.0 }, // Some zeros x1.
174 { 9.0, 9.0, 5.0, 5.0, 1.0 },
175 },
176 { { 1.0, 2.0, 3.0, 1.0, 5.0 }, // Some zeros x2.
177 { 0.0, 9.0, 0.0, 5.0, 0.0 },
178 },
179 { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros x1.
180 { 9.0, 9.0, 5.0, 5.0, 1.0 },
181 },
182 { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // All zeros x2.
183 { 0.0, 0.0, 0.0, 0.0, 0.0 },
184 },
185 { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros.
186 { 0.0, 0.0, 0.0, 0.0, 0.0 },
187 },
188 };
189 for (int k = 0; k < ARRAYSIZE(kTests); ++k) {
190 double *x1 = &(kTests[k].x1[0]);
191 double *x2 = &(kTests[k].x2[0]);
192 double *parameters[] = { x1, x2 };
193
194 double dydx1[10];
195 double dydx2[10];
196 double *jacobians[2] = { &dydx1[0], &dydx2[0] };
197
198 double residuals[2];
199
200 ASSERT_TRUE(cost_function->Evaluate(&parameters[0],
201 &residuals[0],
202 &jacobians[0]));
203 LOG(INFO) << "Ran evaluate for test k=" << k << " c=" << c;
204
205 double x1x2 = 0;
206 for (int i = 0; i < 5; ++i) {
207 x1x2 += x1[i] * x2[i];
208 }
209
210 for (int i = 0; i < 5; ++i) {
211 const double kEps = (c == 0 ? /* central */ 3e-9 : /* forward */ 2e-5);
212
213 ExpectClose( x2[i] * cos(x1x2), dydx1[5 * 0 + i], kEps); // NOLINT
214 ExpectClose( x1[i] * cos(x1x2), dydx2[5 * 0 + i], kEps); // NOLINT
215 ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], kEps);
216 ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], kEps);
217 }
218 }
219 }
220}
221
222} // namespace internal
223} // namespace ceres