blob: 888c65eba3a75d60cf9db062b13f97787f392a08 [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Preconditioners for linear systems that arise in Structure from
32// Motion problems. VisibilityBasedPreconditioner implements three
33// preconditioners:
34//
35// SCHUR_JACOBI
36// CLUSTER_JACOBI
37// CLUSTER_TRIDIAGONAL
38//
39// Detailed descriptions of these preconditions beyond what is
40// documented here can be found in
41//
42// Bundle Adjustment in the Large
43// S. Agarwal, N. Snavely, S. Seitz & R. Szeliski, ECCV 2010
44// http://www.cs.washington.edu/homes/sagarwal/bal.pdf
45//
46// Visibility Based Preconditioning for Bundle Adjustment
47// A. Kushal & S. Agarwal, submitted to CVPR 2012
48// http://www.cs.washington.edu/homes/sagarwal/vbp.pdf
49//
50// The three preconditioners share enough code that its most efficient
51// to implement them as part of the same code base.
52
53#ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
54#define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
55
56#include <set>
57#include <vector>
58#include <utility>
59#include "ceres/collections_port.h"
60#include "ceres/graph.h"
61#include "ceres/linear_solver.h"
62#include "ceres/linear_operator.h"
63#include "ceres/suitesparse.h"
64#include "ceres/internal/macros.h"
65#include "ceres/internal/scoped_ptr.h"
66
67namespace ceres {
68namespace internal {
69
70class BlockRandomAccessSparseMatrix;
71class BlockSparseMatrixBase;
72class CompressedRowBlockStructure;
73class SchurEliminatorBase;
74
75// This class implements three preconditioners for Structure from
76// Motion/Bundle Adjustment problems. The name
77// VisibilityBasedPreconditioner comes from the fact that the sparsity
78// structure of the preconditioner matrix is determined by analyzing
79// the visibility structure of the scene, i.e. which cameras see which
80// points.
81//
82// Strictly speaking, SCHUR_JACOBI is not a visibility based
83// preconditioner but it is an extreme case of CLUSTER_JACOBI, where
84// every cluster contains exactly one camera block. Treating it as a
85// special case of CLUSTER_JACOBI makes it easy to implement as part
86// of the same code base with no significant loss of performance.
87//
88// In the following, we will only discuss CLUSTER_JACOBI and
89// CLUSTER_TRIDIAGONAL.
90//
91// The key idea of visibility based preconditioning is to identify
92// cameras that we expect have strong interactions, and then using the
93// entries in the Schur complement matrix corresponding to these
94// camera pairs as an approximation to the full Schur complement.
95//
96// CLUSTER_JACOBI identifies these camera pairs by clustering cameras,
97// and considering all non-zero camera pairs within each cluster. The
98// clustering in the current implementation is done using the
99// Canonical Views algorithm of Simon et al. (see
100// canonical_views_clustering.h). For the purposes of clustering, the
101// similarity or the degree of interaction between a pair of cameras
102// is measured by counting the number of points visible in both the
103// cameras. Thus the name VisibilityBasedPreconditioner. Further, if we
104// were to permute the parameter blocks such that all the cameras in
105// the same cluster occur contiguously, the preconditioner matrix will
106// be a block diagonal matrix with blocks corresponding to the
107// clusters. Thus in analogy with the Jacobi preconditioner we refer
108// to this as the CLUSTER_JACOBI preconditioner.
109//
110// CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI
111// preconditioner by considering the interaction between clusters and
112// identifying strong interactions between cluster pairs. This is done
113// by constructing a weighted graph on the clusters, with the weight
114// on the edges connecting two clusters proportional to the number of
115// 3D points visible to cameras in both the clusters. A degree-2
116// maximum spanning forest is identified in this graph and the camera
117// pairs contained in the edges of this forest are added to the
118// preconditioner. The detailed reasoning for this construction is
119// explained in the paper mentioned above.
120//
121// Degree-2 spanning trees and forests have the property that they
122// correspond to tri-diagonal matrices. Thus there exist a permutation
123// of the camera blocks under which the CLUSTER_TRIDIAGONAL
124// preconditioner matrix is a block tridiagonal matrix, and thus the
125// name for the preconditioner.
126//
127// Thread Safety: This class is NOT thread safe.
128//
129// Example usage:
130//
131// LinearSolver::Options options;
132// options.preconditioner_type = CLUSTER_JACOBI;
133// options.num_eliminate_blocks = num_points;
134// VisibilityBasedPreconditioner preconditioner(
135// *A.block_structure(), options);
Sameer Agarwala9d8ef82012-05-14 02:28:05 -0700136// preconditioner.Update(A, NULL);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700137// preconditioner.RightMultiply(x, y);
138//
139
140#ifndef CERES_NO_SUITESPARSE
141class VisibilityBasedPreconditioner : public LinearOperator {
142 public:
143 // Initialize the symbolic structure of the preconditioner. bs is
144 // the block structure of the linear system to be solved. It is used
145 // to determine the sparsity structure of the preconditioner matrix.
146 //
147 // It has the same structural requirement as other Schur complement
148 // based solvers. Please see schur_eliminator.h for more details.
149 //
150 // LinearSolver::Options::num_eliminate_blocks should be set to the
151 // number of e_blocks in the block structure.
152 //
153 // TODO(sameeragarwal): The use of LinearSolver::Options should
154 // ultimately be replaced with Preconditioner::Options and some sort
155 // of preconditioner factory along the lines of
156 // LinearSolver::CreateLinearSolver. I will wait to do this till I
157 // create a general purpose block Jacobi preconditioner for general
158 // sparse problems along with a CGLS solver.
159 VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
160 const LinearSolver::Options& options);
161 virtual ~VisibilityBasedPreconditioner();
162
Sameer Agarwala9d8ef82012-05-14 02:28:05 -0700163 // Update the numerical value of the preconditioner for the linear
Keir Mierle8ebb0732012-04-30 23:09:08 -0700164 // system:
165 //
166 // | A | x = |b|
167 // |diag(D)| |0|
168 //
169 // for some vector b. It is important that the matrix A have the
170 // same block structure as the one used to construct this object.
171 //
172 // D can be NULL, in which case its interpreted as a diagonal matrix
173 // of size zero.
Sameer Agarwala9d8ef82012-05-14 02:28:05 -0700174 bool Update(const BlockSparseMatrixBase& A, const double* D);
175
Keir Mierle8ebb0732012-04-30 23:09:08 -0700176
177 // LinearOperator interface. Since the operator is symmetric,
178 // LeftMultiply and num_cols are just calls to RightMultiply and
Sameer Agarwala9d8ef82012-05-14 02:28:05 -0700179 // num_rows respectively. Update() must be called before
Keir Mierle8ebb0732012-04-30 23:09:08 -0700180 // RightMultiply can be called.
181 virtual void RightMultiply(const double* x, double* y) const;
182 virtual void LeftMultiply(const double* x, double* y) const {
183 RightMultiply(x, y);
184 }
185 virtual int num_rows() const;
186 virtual int num_cols() const { return num_rows(); }
187
188 friend class VisibilityBasedPreconditionerTest;
189 private:
190 void ComputeSchurJacobiSparsity(const CompressedRowBlockStructure& bs);
191 void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs);
192 void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs);
193 void InitStorage(const CompressedRowBlockStructure& bs);
194 void InitEliminator(const CompressedRowBlockStructure& bs);
195 bool Factorize();
196 void ScaleOffDiagonalCells();
197
198 void ClusterCameras(const vector< set<int> >& visibility);
199 void FlattenMembershipMap(const HashMap<int, int>& membership_map,
200 vector<int>* membership_vector) const;
201 void ComputeClusterVisibility(const vector<set<int> >& visibility,
202 vector<set<int> >* cluster_visibility) const;
203 Graph<int>* CreateClusterGraph(const vector<set<int> >& visibility) const;
204 void ForestToClusterPairs(const Graph<int>& forest,
205 HashSet<pair<int, int> >* cluster_pairs) const;
206 void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs);
207 bool IsBlockPairInPreconditioner(int block1, int block2) const;
208 bool IsBlockPairOffDiagonal(int block1, int block2) const;
209
210 LinearSolver::Options options_;
211
212 // Number of parameter blocks in the schur complement.
213 int num_blocks_;
214 int num_clusters_;
215
216 // Sizes of the blocks in the schur complement.
217 vector<int> block_size_;
218
219 // Mapping from cameras to clusters.
220 vector<int> cluster_membership_;
221
222 // Non-zero camera pairs from the schur complement matrix that are
223 // present in the preconditioner, sorted by row (first element of
224 // each pair), then column (second).
225 set<pair<int, int> > block_pairs_;
226
227 // Set of cluster pairs (including self pairs (i,i)) in the
228 // preconditioner.
229 HashSet<pair<int, int> > cluster_pairs_;
230 scoped_ptr<SchurEliminatorBase> eliminator_;
231
232 // Preconditioner matrix.
233 scoped_ptr<BlockRandomAccessSparseMatrix> m_;
234
235 // RightMultiply is a const method for LinearOperators. It is
236 // implemented using CHOLMOD's sparse triangular matrix solve
237 // function. This however requires non-const access to the
238 // SuiteSparse context object, even though it does not result in any
239 // of the state of the preconditioner being modified.
240 SuiteSparse ss_;
241
242 // Symbolic and numeric factorization of the preconditioner.
243 cholmod_factor* factor_;
244
245 // Temporary vector used by RightMultiply.
246 cholmod_dense* tmp_rhs_;
Sameer Agarwal237d6592012-05-30 20:34:49 -0700247 CERES_DISALLOW_COPY_AND_ASSIGN(VisibilityBasedPreconditioner);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700248};
249#else // SuiteSparse
250// If SuiteSparse is not compiled in, the preconditioner is not
251// available.
252class VisibilityBasedPreconditioner : public LinearOperator {
253 public:
254 VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
255 const LinearSolver::Options& options) {
256 LOG(FATAL) << "Visibility based preconditioning is not available. Please "
257 "build Ceres with SuiteSparse.";
258 }
259 virtual ~VisibilityBasedPreconditioner() {}
260 virtual void RightMultiply(const double* x, double* y) const {}
261 virtual void LeftMultiply(const double* x, double* y) const {}
262 virtual int num_rows() const { return -1; }
263 virtual int num_cols() const { return -1; }
Sameer Agarwalb0518732012-05-29 00:27:57 -0700264 bool Update(const BlockSparseMatrixBase& A, const double* D) {
Keir Mierle8ebb0732012-04-30 23:09:08 -0700265 return false;
266 }
267};
268#endif // CERES_NO_SUITESPARSE
269
270} // namespace internal
271} // namespace ceres
272
273#endif // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_