Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // |
| 31 | // Preconditioners for linear systems that arise in Structure from |
| 32 | // Motion problems. VisibilityBasedPreconditioner implements three |
| 33 | // preconditioners: |
| 34 | // |
| 35 | // SCHUR_JACOBI |
| 36 | // CLUSTER_JACOBI |
| 37 | // CLUSTER_TRIDIAGONAL |
| 38 | // |
| 39 | // Detailed descriptions of these preconditions beyond what is |
| 40 | // documented here can be found in |
| 41 | // |
| 42 | // Bundle Adjustment in the Large |
| 43 | // S. Agarwal, N. Snavely, S. Seitz & R. Szeliski, ECCV 2010 |
| 44 | // http://www.cs.washington.edu/homes/sagarwal/bal.pdf |
| 45 | // |
| 46 | // Visibility Based Preconditioning for Bundle Adjustment |
| 47 | // A. Kushal & S. Agarwal, submitted to CVPR 2012 |
| 48 | // http://www.cs.washington.edu/homes/sagarwal/vbp.pdf |
| 49 | // |
| 50 | // The three preconditioners share enough code that its most efficient |
| 51 | // to implement them as part of the same code base. |
| 52 | |
| 53 | #ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_ |
| 54 | #define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_ |
| 55 | |
| 56 | #include <set> |
| 57 | #include <vector> |
| 58 | #include <utility> |
| 59 | #include "ceres/collections_port.h" |
| 60 | #include "ceres/graph.h" |
| 61 | #include "ceres/linear_solver.h" |
| 62 | #include "ceres/linear_operator.h" |
| 63 | #include "ceres/suitesparse.h" |
| 64 | #include "ceres/internal/macros.h" |
| 65 | #include "ceres/internal/scoped_ptr.h" |
| 66 | |
| 67 | namespace ceres { |
| 68 | namespace internal { |
| 69 | |
| 70 | class BlockRandomAccessSparseMatrix; |
| 71 | class BlockSparseMatrixBase; |
| 72 | class CompressedRowBlockStructure; |
| 73 | class SchurEliminatorBase; |
| 74 | |
| 75 | // This class implements three preconditioners for Structure from |
| 76 | // Motion/Bundle Adjustment problems. The name |
| 77 | // VisibilityBasedPreconditioner comes from the fact that the sparsity |
| 78 | // structure of the preconditioner matrix is determined by analyzing |
| 79 | // the visibility structure of the scene, i.e. which cameras see which |
| 80 | // points. |
| 81 | // |
| 82 | // Strictly speaking, SCHUR_JACOBI is not a visibility based |
| 83 | // preconditioner but it is an extreme case of CLUSTER_JACOBI, where |
| 84 | // every cluster contains exactly one camera block. Treating it as a |
| 85 | // special case of CLUSTER_JACOBI makes it easy to implement as part |
| 86 | // of the same code base with no significant loss of performance. |
| 87 | // |
| 88 | // In the following, we will only discuss CLUSTER_JACOBI and |
| 89 | // CLUSTER_TRIDIAGONAL. |
| 90 | // |
| 91 | // The key idea of visibility based preconditioning is to identify |
| 92 | // cameras that we expect have strong interactions, and then using the |
| 93 | // entries in the Schur complement matrix corresponding to these |
| 94 | // camera pairs as an approximation to the full Schur complement. |
| 95 | // |
| 96 | // CLUSTER_JACOBI identifies these camera pairs by clustering cameras, |
| 97 | // and considering all non-zero camera pairs within each cluster. The |
| 98 | // clustering in the current implementation is done using the |
| 99 | // Canonical Views algorithm of Simon et al. (see |
| 100 | // canonical_views_clustering.h). For the purposes of clustering, the |
| 101 | // similarity or the degree of interaction between a pair of cameras |
| 102 | // is measured by counting the number of points visible in both the |
| 103 | // cameras. Thus the name VisibilityBasedPreconditioner. Further, if we |
| 104 | // were to permute the parameter blocks such that all the cameras in |
| 105 | // the same cluster occur contiguously, the preconditioner matrix will |
| 106 | // be a block diagonal matrix with blocks corresponding to the |
| 107 | // clusters. Thus in analogy with the Jacobi preconditioner we refer |
| 108 | // to this as the CLUSTER_JACOBI preconditioner. |
| 109 | // |
| 110 | // CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI |
| 111 | // preconditioner by considering the interaction between clusters and |
| 112 | // identifying strong interactions between cluster pairs. This is done |
| 113 | // by constructing a weighted graph on the clusters, with the weight |
| 114 | // on the edges connecting two clusters proportional to the number of |
| 115 | // 3D points visible to cameras in both the clusters. A degree-2 |
| 116 | // maximum spanning forest is identified in this graph and the camera |
| 117 | // pairs contained in the edges of this forest are added to the |
| 118 | // preconditioner. The detailed reasoning for this construction is |
| 119 | // explained in the paper mentioned above. |
| 120 | // |
| 121 | // Degree-2 spanning trees and forests have the property that they |
| 122 | // correspond to tri-diagonal matrices. Thus there exist a permutation |
| 123 | // of the camera blocks under which the CLUSTER_TRIDIAGONAL |
| 124 | // preconditioner matrix is a block tridiagonal matrix, and thus the |
| 125 | // name for the preconditioner. |
| 126 | // |
| 127 | // Thread Safety: This class is NOT thread safe. |
| 128 | // |
| 129 | // Example usage: |
| 130 | // |
| 131 | // LinearSolver::Options options; |
| 132 | // options.preconditioner_type = CLUSTER_JACOBI; |
| 133 | // options.num_eliminate_blocks = num_points; |
| 134 | // VisibilityBasedPreconditioner preconditioner( |
| 135 | // *A.block_structure(), options); |
Sameer Agarwal | a9d8ef8 | 2012-05-14 02:28:05 -0700 | [diff] [blame] | 136 | // preconditioner.Update(A, NULL); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 137 | // preconditioner.RightMultiply(x, y); |
| 138 | // |
| 139 | |
| 140 | #ifndef CERES_NO_SUITESPARSE |
| 141 | class VisibilityBasedPreconditioner : public LinearOperator { |
| 142 | public: |
| 143 | // Initialize the symbolic structure of the preconditioner. bs is |
| 144 | // the block structure of the linear system to be solved. It is used |
| 145 | // to determine the sparsity structure of the preconditioner matrix. |
| 146 | // |
| 147 | // It has the same structural requirement as other Schur complement |
| 148 | // based solvers. Please see schur_eliminator.h for more details. |
| 149 | // |
| 150 | // LinearSolver::Options::num_eliminate_blocks should be set to the |
| 151 | // number of e_blocks in the block structure. |
| 152 | // |
| 153 | // TODO(sameeragarwal): The use of LinearSolver::Options should |
| 154 | // ultimately be replaced with Preconditioner::Options and some sort |
| 155 | // of preconditioner factory along the lines of |
| 156 | // LinearSolver::CreateLinearSolver. I will wait to do this till I |
| 157 | // create a general purpose block Jacobi preconditioner for general |
| 158 | // sparse problems along with a CGLS solver. |
| 159 | VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs, |
| 160 | const LinearSolver::Options& options); |
| 161 | virtual ~VisibilityBasedPreconditioner(); |
| 162 | |
Sameer Agarwal | a9d8ef8 | 2012-05-14 02:28:05 -0700 | [diff] [blame] | 163 | // Update the numerical value of the preconditioner for the linear |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 164 | // system: |
| 165 | // |
| 166 | // | A | x = |b| |
| 167 | // |diag(D)| |0| |
| 168 | // |
| 169 | // for some vector b. It is important that the matrix A have the |
| 170 | // same block structure as the one used to construct this object. |
| 171 | // |
| 172 | // D can be NULL, in which case its interpreted as a diagonal matrix |
| 173 | // of size zero. |
Sameer Agarwal | a9d8ef8 | 2012-05-14 02:28:05 -0700 | [diff] [blame] | 174 | bool Update(const BlockSparseMatrixBase& A, const double* D); |
| 175 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 176 | |
| 177 | // LinearOperator interface. Since the operator is symmetric, |
| 178 | // LeftMultiply and num_cols are just calls to RightMultiply and |
Sameer Agarwal | a9d8ef8 | 2012-05-14 02:28:05 -0700 | [diff] [blame] | 179 | // num_rows respectively. Update() must be called before |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 180 | // RightMultiply can be called. |
| 181 | virtual void RightMultiply(const double* x, double* y) const; |
| 182 | virtual void LeftMultiply(const double* x, double* y) const { |
| 183 | RightMultiply(x, y); |
| 184 | } |
| 185 | virtual int num_rows() const; |
| 186 | virtual int num_cols() const { return num_rows(); } |
| 187 | |
| 188 | friend class VisibilityBasedPreconditionerTest; |
| 189 | private: |
| 190 | void ComputeSchurJacobiSparsity(const CompressedRowBlockStructure& bs); |
| 191 | void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs); |
| 192 | void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs); |
| 193 | void InitStorage(const CompressedRowBlockStructure& bs); |
| 194 | void InitEliminator(const CompressedRowBlockStructure& bs); |
| 195 | bool Factorize(); |
| 196 | void ScaleOffDiagonalCells(); |
| 197 | |
| 198 | void ClusterCameras(const vector< set<int> >& visibility); |
| 199 | void FlattenMembershipMap(const HashMap<int, int>& membership_map, |
| 200 | vector<int>* membership_vector) const; |
| 201 | void ComputeClusterVisibility(const vector<set<int> >& visibility, |
| 202 | vector<set<int> >* cluster_visibility) const; |
| 203 | Graph<int>* CreateClusterGraph(const vector<set<int> >& visibility) const; |
| 204 | void ForestToClusterPairs(const Graph<int>& forest, |
| 205 | HashSet<pair<int, int> >* cluster_pairs) const; |
| 206 | void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs); |
| 207 | bool IsBlockPairInPreconditioner(int block1, int block2) const; |
| 208 | bool IsBlockPairOffDiagonal(int block1, int block2) const; |
| 209 | |
| 210 | LinearSolver::Options options_; |
| 211 | |
| 212 | // Number of parameter blocks in the schur complement. |
| 213 | int num_blocks_; |
| 214 | int num_clusters_; |
| 215 | |
| 216 | // Sizes of the blocks in the schur complement. |
| 217 | vector<int> block_size_; |
| 218 | |
| 219 | // Mapping from cameras to clusters. |
| 220 | vector<int> cluster_membership_; |
| 221 | |
| 222 | // Non-zero camera pairs from the schur complement matrix that are |
| 223 | // present in the preconditioner, sorted by row (first element of |
| 224 | // each pair), then column (second). |
| 225 | set<pair<int, int> > block_pairs_; |
| 226 | |
| 227 | // Set of cluster pairs (including self pairs (i,i)) in the |
| 228 | // preconditioner. |
| 229 | HashSet<pair<int, int> > cluster_pairs_; |
| 230 | scoped_ptr<SchurEliminatorBase> eliminator_; |
| 231 | |
| 232 | // Preconditioner matrix. |
| 233 | scoped_ptr<BlockRandomAccessSparseMatrix> m_; |
| 234 | |
| 235 | // RightMultiply is a const method for LinearOperators. It is |
| 236 | // implemented using CHOLMOD's sparse triangular matrix solve |
| 237 | // function. This however requires non-const access to the |
| 238 | // SuiteSparse context object, even though it does not result in any |
| 239 | // of the state of the preconditioner being modified. |
| 240 | SuiteSparse ss_; |
| 241 | |
| 242 | // Symbolic and numeric factorization of the preconditioner. |
| 243 | cholmod_factor* factor_; |
| 244 | |
| 245 | // Temporary vector used by RightMultiply. |
| 246 | cholmod_dense* tmp_rhs_; |
Sameer Agarwal | 237d659 | 2012-05-30 20:34:49 -0700 | [diff] [blame] | 247 | CERES_DISALLOW_COPY_AND_ASSIGN(VisibilityBasedPreconditioner); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 248 | }; |
| 249 | #else // SuiteSparse |
| 250 | // If SuiteSparse is not compiled in, the preconditioner is not |
| 251 | // available. |
| 252 | class VisibilityBasedPreconditioner : public LinearOperator { |
| 253 | public: |
| 254 | VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs, |
| 255 | const LinearSolver::Options& options) { |
| 256 | LOG(FATAL) << "Visibility based preconditioning is not available. Please " |
| 257 | "build Ceres with SuiteSparse."; |
| 258 | } |
| 259 | virtual ~VisibilityBasedPreconditioner() {} |
| 260 | virtual void RightMultiply(const double* x, double* y) const {} |
| 261 | virtual void LeftMultiply(const double* x, double* y) const {} |
| 262 | virtual int num_rows() const { return -1; } |
| 263 | virtual int num_cols() const { return -1; } |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 264 | bool Update(const BlockSparseMatrixBase& A, const double* D) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 265 | return false; |
| 266 | } |
| 267 | }; |
| 268 | #endif // CERES_NO_SUITESPARSE |
| 269 | |
| 270 | } // namespace internal |
| 271 | } // namespace ceres |
| 272 | |
| 273 | #endif // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_ |