Sameer Agarwal | 1d11be9 | 2012-11-25 19:28:06 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // |
| 31 | // Interface for and implementation of various Line search algorithms. |
| 32 | |
| 33 | #ifndef CERES_INTERNAL_LINE_SEARCH_H_ |
| 34 | #define CERES_INTERNAL_LINE_SEARCH_H_ |
| 35 | |
| 36 | #include <glog/logging.h> |
| 37 | #include <vector> |
| 38 | #include "ceres/internal/eigen.h" |
| 39 | #include "ceres/internal/port.h" |
| 40 | |
| 41 | namespace ceres { |
| 42 | namespace internal { |
| 43 | |
| 44 | class Evaluator; |
| 45 | |
| 46 | // Line search is another name for a one dimensional optimization |
| 47 | // algorithm. The name "line search" comes from the fact one |
| 48 | // dimensional optimization problems that arise as subproblems of |
| 49 | // general multidimensional optimization problems. |
| 50 | // |
| 51 | // While finding the exact minimum of a one dimensionl function is |
| 52 | // hard, instances of LineSearch find a point that satisfies a |
| 53 | // sufficient decrease condition. Depending on the particular |
| 54 | // condition used, we get a variety of different line search |
| 55 | // algorithms, e.g., Armijo, Wolfe etc. |
| 56 | class LineSearch { |
| 57 | public: |
| 58 | class Function; |
| 59 | |
| 60 | struct Options { |
| 61 | Options() |
| 62 | : interpolation_degree(1), |
| 63 | use_higher_degree_interpolation_when_possible(false), |
| 64 | sufficient_decrease(1e-4), |
| 65 | min_relative_step_size_change(1e-3), |
| 66 | max_relative_step_size_change(0.6), |
| 67 | step_size_threshold(1e-9), |
| 68 | function(NULL) {} |
| 69 | |
| 70 | // TODO(sameeragarwal): Replace this with enums which are common |
| 71 | // across various line searches. |
| 72 | // |
| 73 | // Degree of the polynomial used to approximate the objective |
| 74 | // function. Valid values are {0, 1, 2}. |
| 75 | // |
| 76 | // For Armijo line search |
| 77 | // |
| 78 | // 0: Bisection based backtracking search. |
| 79 | // 1: Quadratic interpolation. |
| 80 | // 2: Cubic interpolation. |
| 81 | int interpolation_degree; |
| 82 | |
| 83 | // Usually its possible to increase the degree of the |
| 84 | // interpolation polynomial by storing and using an extra point. |
| 85 | bool use_higher_degree_interpolation_when_possible; |
| 86 | |
| 87 | // Armijo line search parameters. |
| 88 | |
| 89 | // Solving the line search problem exactly is computationally |
| 90 | // prohibitive. Fortunately, line search based optimization |
| 91 | // algorithms can still guarantee convergence if instead of an |
| 92 | // exact solution, the line search algorithm returns a solution |
| 93 | // which decreases the value of the objective function |
| 94 | // sufficiently. More precisely, we are looking for a step_size |
| 95 | // s.t. |
| 96 | // |
| 97 | // f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size |
| 98 | double sufficient_decrease; |
| 99 | |
| 100 | // In each iteration of the Armijo line search, |
| 101 | // |
| 102 | // new_step_size >= min_relative_step_size_change * step_size |
| 103 | double min_relative_step_size_change; |
| 104 | |
| 105 | // In each iteration of the Armijo line search, |
| 106 | // |
| 107 | // new_step_size <= max_relative_step_size_change * step_size |
| 108 | double max_relative_step_size_change; |
| 109 | |
| 110 | // If during the line search, the step_size falls below this |
| 111 | // value, it is truncated to zero. |
| 112 | double step_size_threshold; |
| 113 | |
| 114 | // The one dimensional function that the line search algorithm |
| 115 | // minimizes. |
| 116 | Function* function; |
| 117 | }; |
| 118 | |
| 119 | // An object used by the line search to access the function values |
| 120 | // and gradient of the one dimensional function being optimized. |
| 121 | // |
| 122 | // In practice, this object will provide access to the objective |
| 123 | // function value and the directional derivative of the underlying |
| 124 | // optimization problem along a specific search direction. |
| 125 | // |
| 126 | // See LineSearchFunction for an example implementation. |
| 127 | class Function { |
| 128 | public: |
| 129 | virtual ~Function() {} |
| 130 | // Evaluate the line search objective |
| 131 | // |
| 132 | // f(x) = p(position + x * direction) |
| 133 | // |
| 134 | // Where, p is the objective function of the general optimization |
| 135 | // problem. |
| 136 | // |
| 137 | // g is the gradient f'(x) at x. |
| 138 | // |
Sameer Agarwal | f4d0164 | 2012-11-26 12:55:58 -0800 | [diff] [blame] | 139 | // f must not be null. The gradient is computed only if g is not null. |
Sameer Agarwal | 1d11be9 | 2012-11-25 19:28:06 -0800 | [diff] [blame] | 140 | virtual bool Evaluate(double x, double* f, double* g) = 0; |
| 141 | }; |
| 142 | |
| 143 | // Result of the line search. |
| 144 | struct Summary { |
| 145 | Summary() |
| 146 | : success(false), |
| 147 | optimal_step_size(0.0), |
| 148 | num_evaluations(0) {} |
| 149 | |
| 150 | bool success; |
| 151 | double optimal_step_size; |
| 152 | int num_evaluations; |
| 153 | }; |
| 154 | |
| 155 | virtual ~LineSearch() {} |
| 156 | |
| 157 | // Perform the line search. |
| 158 | // |
Sameer Agarwal | f4d0164 | 2012-11-26 12:55:58 -0800 | [diff] [blame] | 159 | // initial_step_size must be a positive number. |
| 160 | // |
| 161 | // initial_cost and initial_gradient are the values and gradient of |
| 162 | // the function at zero. |
| 163 | // summary must not be null and will contain the result of the line |
| 164 | // search. |
Sameer Agarwal | 1d11be9 | 2012-11-25 19:28:06 -0800 | [diff] [blame] | 165 | // |
| 166 | // Summary::success is true if a non-zero step size is found. |
| 167 | virtual void Search(const LineSearch::Options& options, |
| 168 | double initial_step_size, |
Sameer Agarwal | f4d0164 | 2012-11-26 12:55:58 -0800 | [diff] [blame] | 169 | double initial_cost, |
| 170 | double initial_gradient, |
Sameer Agarwal | 1d11be9 | 2012-11-25 19:28:06 -0800 | [diff] [blame] | 171 | Summary* summary) = 0; |
| 172 | }; |
| 173 | |
| 174 | class LineSearchFunction : public LineSearch::Function { |
| 175 | public: |
| 176 | explicit LineSearchFunction(Evaluator* evaluator); |
| 177 | virtual ~LineSearchFunction() {} |
| 178 | void Init(const Vector& position, const Vector& direction); |
| 179 | virtual bool Evaluate(const double x, double* f, double* g); |
| 180 | |
| 181 | private: |
| 182 | Evaluator* evaluator_; |
| 183 | Vector position_; |
| 184 | Vector direction_; |
| 185 | |
| 186 | // evaluation_point = Evaluator::Plus(position_, x * direction_); |
| 187 | Vector evaluation_point_; |
| 188 | |
| 189 | // scaled_direction = x * direction_; |
| 190 | Vector scaled_direction_; |
| 191 | Vector gradient_; |
| 192 | }; |
| 193 | |
| 194 | // Backtracking and interpolation based Armijo line search. This |
| 195 | // implementation is based on the Armijo line search that ships in the |
| 196 | // minFunc package by Mark Schmidt. |
| 197 | // |
| 198 | // For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html |
| 199 | class ArmijoLineSearch : public LineSearch { |
| 200 | public: |
| 201 | virtual ~ArmijoLineSearch() {} |
| 202 | virtual void Search(const LineSearch::Options& options, |
| 203 | double initial_step_size, |
Sameer Agarwal | f4d0164 | 2012-11-26 12:55:58 -0800 | [diff] [blame] | 204 | double initial_cost, |
| 205 | double initial_gradient, |
Sameer Agarwal | 1d11be9 | 2012-11-25 19:28:06 -0800 | [diff] [blame] | 206 | Summary* summary); |
| 207 | }; |
| 208 | |
| 209 | } // namespace internal |
| 210 | } // namespace ceres |
| 211 | |
| 212 | #endif // CERES_INTERNAL_LINE_SEARCH_H_ |