blob: 71469eab200e168293d48830196c8f39c62c128d [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// Based on the tests in numeric_diff_cost_function.cc.
32//
33// TODO(keir): See about code duplication.
34
35#include "ceres/runtime_numeric_diff_cost_function.h"
36
37#include <algorithm>
38#include <cmath>
39#include <string>
40#include <vector>
Keir Mierle8ebb0732012-04-30 23:09:08 -070041#include "ceres/cost_function.h"
42#include "ceres/internal/macros.h"
43#include "ceres/internal/scoped_ptr.h"
Sameer Agarwal0beab862012-08-13 15:12:01 -070044#include "ceres/stringprintf.h"
45#include "ceres/test_util.h"
46#include "glog/logging.h"
47#include "gtest/gtest.h"
Keir Mierle8ebb0732012-04-30 23:09:08 -070048
49namespace ceres {
50namespace internal {
51
52const double kRelativeEps = 1e-6;
53
54// y1 = x1'x2 -> dy1/dx1 = x2, dy1/dx2 = x1
55// y2 = (x1'x2)^2 -> dy2/dx1 = 2 * x2 * (x1'x2), dy2/dx2 = 2 * x1 * (x1'x2)
56// y3 = x2'x2 -> dy3/dx1 = 0, dy3/dx2 = 2 * x2
57class TestCostFunction : public CostFunction {
58 public:
59 TestCostFunction() {
60 set_num_residuals(3);
61 mutable_parameter_block_sizes()->push_back(5); // x1.
62 mutable_parameter_block_sizes()->push_back(5); // x2.
63 }
64 virtual bool Evaluate(double const* const* parameters,
65 double* residuals,
66 double** jacobians) const {
67 (void) jacobians; // Ignored.
68
69 residuals[0] = residuals[1] = residuals[2] = 0;
70 for (int i = 0; i < 5; ++i) {
71 residuals[0] += parameters[0][i] * parameters[1][i];
72 residuals[2] += parameters[1][i] * parameters[1][i];
73 }
74 residuals[1] = residuals[0] * residuals[0];
75 return true;
76 }
77};
78
79TEST(NumericDiffCostFunction, EasyCase) {
80 // Try both central and forward difference.
81 TestCostFunction term;
82 scoped_ptr<CostFunction> cfs[2];
83 cfs[0].reset(
84 CreateRuntimeNumericDiffCostFunction(&term, CENTRAL, kRelativeEps));
85
86 cfs[1].reset(
87 CreateRuntimeNumericDiffCostFunction(&term, FORWARD, kRelativeEps));
88
89
90 for (int c = 0; c < 2; ++c) {
91 CostFunction *cost_function = cfs[c].get();
92
93 double x1[] = { 1.0, 2.0, 3.0, 4.0, 5.0 };
94 double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 };
95 double *parameters[] = { &x1[0], &x2[0] };
96
97 double dydx1[15]; // 3 x 5, row major.
98 double dydx2[15]; // 3 x 5, row major.
99 double *jacobians[2] = { &dydx1[0], &dydx2[0] };
100
101 double residuals[3] = {-1e-100, -2e-100, -3e-100 };
102
103 ASSERT_TRUE(cost_function->Evaluate(&parameters[0],
104 &residuals[0],
105 &jacobians[0]));
106
107 EXPECT_EQ(residuals[0], 67);
108 EXPECT_EQ(residuals[1], 4489);
109 EXPECT_EQ(residuals[2], 213);
110
111 for (int i = 0; i < 5; ++i) {
112 LOG(INFO) << "c = " << c << " i = " << i;
113 const double kEps = c == 0 ? /* central */ 3e-9 : /* forward */ 2e-5;
114
115 ExpectClose(x2[i], dydx1[5 * 0 + i], kEps); // y1
116 ExpectClose(x1[i], dydx2[5 * 0 + i], kEps);
117 ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], kEps); // y2
118 ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], kEps);
119 ExpectClose(0.0, dydx1[5 * 2 + i], kEps); // y3
120 ExpectClose(2 * x2[i], dydx2[5 * 2 + i], kEps);
121 }
122 }
123}
124
125// y1 = sin(x1'x2)
126// y2 = exp(-x1'x2 / 10)
127//
128// dy1/dx1 = x2 * cos(x1'x2), dy1/dx2 = x1 * cos(x1'x2)
129// dy2/dx1 = -x2 * exp(-x1'x2 / 10) / 10, dy2/dx2 = -x2 * exp(-x1'x2 / 10) / 10
130class TranscendentalTestCostFunction : public CostFunction {
131 public:
132 TranscendentalTestCostFunction() {
133 set_num_residuals(2);
134 mutable_parameter_block_sizes()->push_back(5); // x1.
135 mutable_parameter_block_sizes()->push_back(5); // x2.
136 }
137 virtual bool Evaluate(double const* const* parameters,
138 double* residuals,
139 double** jacobians) const {
140 (void) jacobians; // Ignored.
141
142 double x1x2 = 0;
143 for (int i = 0; i < 5; ++i) {
144 x1x2 += parameters[0][i] * parameters[1][i];
145 }
146 residuals[0] = sin(x1x2);
147 residuals[1] = exp(-x1x2 / 10);
148 return true;
149 }
150};
151
152TEST(NumericDiffCostFunction, TransendentalOperationsInCostFunction) {
153 // Try both central and forward difference.
154 TranscendentalTestCostFunction term;
155 scoped_ptr<CostFunction> cfs[2];
156 cfs[0].reset(
157 CreateRuntimeNumericDiffCostFunction(&term, CENTRAL, kRelativeEps));
158
159 cfs[1].reset(
160 CreateRuntimeNumericDiffCostFunction(&term, FORWARD, kRelativeEps));
161
162 for (int c = 0; c < 2; ++c) {
163 CostFunction *cost_function = cfs[c].get();
164
165 struct {
166 double x1[5];
167 double x2[5];
168 } kTests[] = {
169 { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // No zeros.
170 { 9.0, 9.0, 5.0, 5.0, 1.0 },
171 },
172 { { 0.0, 2.0, 3.0, 0.0, 5.0 }, // Some zeros x1.
173 { 9.0, 9.0, 5.0, 5.0, 1.0 },
174 },
175 { { 1.0, 2.0, 3.0, 1.0, 5.0 }, // Some zeros x2.
176 { 0.0, 9.0, 0.0, 5.0, 0.0 },
177 },
178 { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros x1.
179 { 9.0, 9.0, 5.0, 5.0, 1.0 },
180 },
181 { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // All zeros x2.
182 { 0.0, 0.0, 0.0, 0.0, 0.0 },
183 },
184 { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros.
185 { 0.0, 0.0, 0.0, 0.0, 0.0 },
186 },
187 };
Keir Mierleefe7ac62012-06-24 22:25:28 -0700188 for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) {
Keir Mierle8ebb0732012-04-30 23:09:08 -0700189 double *x1 = &(kTests[k].x1[0]);
190 double *x2 = &(kTests[k].x2[0]);
191 double *parameters[] = { x1, x2 };
192
193 double dydx1[10];
194 double dydx2[10];
195 double *jacobians[2] = { &dydx1[0], &dydx2[0] };
196
197 double residuals[2];
198
199 ASSERT_TRUE(cost_function->Evaluate(&parameters[0],
200 &residuals[0],
201 &jacobians[0]));
202 LOG(INFO) << "Ran evaluate for test k=" << k << " c=" << c;
203
204 double x1x2 = 0;
205 for (int i = 0; i < 5; ++i) {
206 x1x2 += x1[i] * x2[i];
207 }
208
209 for (int i = 0; i < 5; ++i) {
210 const double kEps = (c == 0 ? /* central */ 3e-9 : /* forward */ 2e-5);
211
212 ExpectClose( x2[i] * cos(x1x2), dydx1[5 * 0 + i], kEps); // NOLINT
213 ExpectClose( x1[i] * cos(x1x2), dydx2[5 * 0 + i], kEps); // NOLINT
214 ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], kEps);
215 ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], kEps);
216 }
217 }
218 }
219}
220
221} // namespace internal
222} // namespace ceres