Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: Craig Silverstein. |
| 30 | // |
| 31 | // A simple mutex wrapper, supporting locks and read-write locks. |
| 32 | // You should assume the locks are *not* re-entrant. |
| 33 | // |
| 34 | // This class is meant to be internal-only and should be wrapped by an |
| 35 | // internal namespace. Before you use this module, please give the |
| 36 | // name of your internal namespace for this module. Or, if you want |
| 37 | // to expose it, you'll want to move it to the Google namespace. We |
| 38 | // cannot put this class in global namespace because there can be some |
| 39 | // problems when we have multiple versions of Mutex in each shared object. |
| 40 | // |
| 41 | // NOTE: by default, we have #ifdef'ed out the TryLock() method. |
| 42 | // This is for two reasons: |
| 43 | // 1) TryLock() under Windows is a bit annoying (it requires a |
| 44 | // #define to be defined very early). |
| 45 | // 2) TryLock() is broken for NO_THREADS mode, at least in NDEBUG |
| 46 | // mode. |
| 47 | // If you need TryLock(), and either these two caveats are not a |
| 48 | // problem for you, or you're willing to work around them, then |
| 49 | // feel free to #define GMUTEX_TRYLOCK, or to remove the #ifdefs |
| 50 | // in the code below. |
| 51 | // |
| 52 | // CYGWIN NOTE: Cygwin support for rwlock seems to be buggy: |
| 53 | // http://www.cygwin.com/ml/cygwin/2008-12/msg00017.html |
| 54 | // Because of that, we might as well use windows locks for |
| 55 | // cygwin. They seem to be more reliable than the cygwin pthreads layer. |
| 56 | // |
| 57 | // TRICKY IMPLEMENTATION NOTE: |
| 58 | // This class is designed to be safe to use during |
| 59 | // dynamic-initialization -- that is, by global constructors that are |
| 60 | // run before main() starts. The issue in this case is that |
| 61 | // dynamic-initialization happens in an unpredictable order, and it |
| 62 | // could be that someone else's dynamic initializer could call a |
| 63 | // function that tries to acquire this mutex -- but that all happens |
| 64 | // before this mutex's constructor has run. (This can happen even if |
| 65 | // the mutex and the function that uses the mutex are in the same .cc |
| 66 | // file.) Basically, because Mutex does non-trivial work in its |
| 67 | // constructor, it's not, in the naive implementation, safe to use |
| 68 | // before dynamic initialization has run on it. |
| 69 | // |
| 70 | // The solution used here is to pair the actual mutex primitive with a |
| 71 | // bool that is set to true when the mutex is dynamically initialized. |
| 72 | // (Before that it's false.) Then we modify all mutex routines to |
| 73 | // look at the bool, and not try to lock/unlock until the bool makes |
| 74 | // it to true (which happens after the Mutex constructor has run.) |
| 75 | // |
| 76 | // This works because before main() starts -- particularly, during |
| 77 | // dynamic initialization -- there are no threads, so a) it's ok that |
| 78 | // the mutex operations are a no-op, since we don't need locking then |
| 79 | // anyway; and b) we can be quite confident our bool won't change |
| 80 | // state between a call to Lock() and a call to Unlock() (that would |
| 81 | // require a global constructor in one translation unit to call Lock() |
| 82 | // and another global constructor in another translation unit to call |
| 83 | // Unlock() later, which is pretty perverse). |
| 84 | // |
| 85 | // That said, it's tricky, and can conceivably fail; it's safest to |
| 86 | // avoid trying to acquire a mutex in a global constructor, if you |
| 87 | // can. One way it can fail is that a really smart compiler might |
| 88 | // initialize the bool to true at static-initialization time (too |
| 89 | // early) rather than at dynamic-initialization time. To discourage |
| 90 | // that, we set is_safe_ to true in code (not the constructor |
| 91 | // colon-initializer) and set it to true via a function that always |
| 92 | // evaluates to true, but that the compiler can't know always |
| 93 | // evaluates to true. This should be good enough. |
| 94 | |
| 95 | #ifndef CERES_INTERNAL_MUTEX_H_ |
| 96 | #define CERES_INTERNAL_MUTEX_H_ |
| 97 | |
| 98 | #if defined(NO_THREADS) |
| 99 | typedef int MutexType; // to keep a lock-count |
| 100 | #elif defined(_WIN32) || defined(__CYGWIN32__) || defined(__CYGWIN64__) |
| 101 | # define WIN32_LEAN_AND_MEAN // We only need minimal includes |
| 102 | # ifdef GMUTEX_TRYLOCK |
| 103 | // We need Windows NT or later for TryEnterCriticalSection(). If you |
| 104 | // don't need that functionality, you can remove these _WIN32_WINNT |
| 105 | // lines, and change TryLock() to assert(0) or something. |
| 106 | # ifndef _WIN32_WINNT |
| 107 | # define _WIN32_WINNT 0x0400 |
| 108 | # endif |
| 109 | # endif |
| 110 | // To avoid macro definition of ERROR. |
| 111 | # define NOGDI |
| 112 | // To avoid macro definition of min/max. |
| 113 | # define NOMINMAX |
| 114 | # include <windows.h> |
| 115 | typedef CRITICAL_SECTION MutexType; |
| 116 | #elif defined(CERES_HAVE_PTHREAD) && defined(CERES_HAVE_RWLOCK) |
| 117 | // Needed for pthread_rwlock_*. If it causes problems, you could take it |
| 118 | // out, but then you'd have to unset CERES_HAVE_RWLOCK (at least on linux -- |
| 119 | // it *does* cause problems for FreeBSD, or MacOSX, but isn't needed for |
| 120 | // locking there.) |
| 121 | # if defined(__linux__) && !defined(_XOPEN_SOURCE) |
| 122 | # define _XOPEN_SOURCE 500 // may be needed to get the rwlock calls |
| 123 | # endif |
| 124 | # include <pthread.h> |
| 125 | typedef pthread_rwlock_t MutexType; |
| 126 | #elif defined(CERES_HAVE_PTHREAD) |
| 127 | # include <pthread.h> |
| 128 | typedef pthread_mutex_t MutexType; |
| 129 | #else |
| 130 | # error Need to implement mutex.h for your architecture, or #define NO_THREADS |
| 131 | #endif |
| 132 | |
| 133 | // We need to include these header files after defining _XOPEN_SOURCE |
| 134 | // as they may define the _XOPEN_SOURCE macro. |
| 135 | #include <assert.h> |
| 136 | #include <stdlib.h> // for abort() |
| 137 | |
| 138 | namespace ceres { |
| 139 | namespace internal { |
| 140 | |
| 141 | class Mutex { |
| 142 | public: |
| 143 | // Create a Mutex that is not held by anybody. This constructor is |
| 144 | // typically used for Mutexes allocated on the heap or the stack. |
| 145 | // See below for a recommendation for constructing global Mutex |
| 146 | // objects. |
| 147 | inline Mutex(); |
| 148 | |
| 149 | // Destructor |
| 150 | inline ~Mutex(); |
| 151 | |
| 152 | inline void Lock(); // Block if needed until free then acquire exclusively |
| 153 | inline void Unlock(); // Release a lock acquired via Lock() |
| 154 | #ifdef GMUTEX_TRYLOCK |
| 155 | inline bool TryLock(); // If free, Lock() and return true, else return false |
| 156 | #endif |
| 157 | // Note that on systems that don't support read-write locks, these may |
| 158 | // be implemented as synonyms to Lock() and Unlock(). So you can use |
| 159 | // these for efficiency, but don't use them anyplace where being able |
| 160 | // to do shared reads is necessary to avoid deadlock. |
| 161 | inline void ReaderLock(); // Block until free or shared then acquire a share |
| 162 | inline void ReaderUnlock(); // Release a read share of this Mutex |
| 163 | inline void WriterLock() { Lock(); } // Acquire an exclusive lock |
| 164 | inline void WriterUnlock() { Unlock(); } // Release a lock from WriterLock() |
| 165 | |
| 166 | // TODO(hamaji): Do nothing, implement correctly. |
| 167 | inline void AssertHeld() {} |
| 168 | |
| 169 | private: |
| 170 | MutexType mutex_; |
| 171 | // We want to make sure that the compiler sets is_safe_ to true only |
| 172 | // when we tell it to, and never makes assumptions is_safe_ is |
| 173 | // always true. volatile is the most reliable way to do that. |
| 174 | volatile bool is_safe_; |
| 175 | |
| 176 | inline void SetIsSafe() { is_safe_ = true; } |
| 177 | |
| 178 | // Catch the error of writing Mutex when intending MutexLock. |
| 179 | Mutex(Mutex* /*ignored*/) {} |
| 180 | // Disallow "evil" constructors |
| 181 | Mutex(const Mutex&); |
| 182 | void operator=(const Mutex&); |
| 183 | }; |
| 184 | |
| 185 | // Now the implementation of Mutex for various systems |
| 186 | #if defined(NO_THREADS) |
| 187 | |
| 188 | // When we don't have threads, we can be either reading or writing, |
| 189 | // but not both. We can have lots of readers at once (in no-threads |
| 190 | // mode, that's most likely to happen in recursive function calls), |
| 191 | // but only one writer. We represent this by having mutex_ be -1 when |
| 192 | // writing and a number > 0 when reading (and 0 when no lock is held). |
| 193 | // |
| 194 | // In debug mode, we assert these invariants, while in non-debug mode |
| 195 | // we do nothing, for efficiency. That's why everything is in an |
| 196 | // assert. |
| 197 | |
| 198 | Mutex::Mutex() : mutex_(0) { } |
| 199 | Mutex::~Mutex() { assert(mutex_ == 0); } |
| 200 | void Mutex::Lock() { assert(--mutex_ == -1); } |
| 201 | void Mutex::Unlock() { assert(mutex_++ == -1); } |
| 202 | #ifdef GMUTEX_TRYLOCK |
| 203 | bool Mutex::TryLock() { if (mutex_) return false; Lock(); return true; } |
| 204 | #endif |
| 205 | void Mutex::ReaderLock() { assert(++mutex_ > 0); } |
| 206 | void Mutex::ReaderUnlock() { assert(mutex_-- > 0); } |
| 207 | |
| 208 | #elif defined(_WIN32) || defined(__CYGWIN32__) || defined(__CYGWIN64__) |
| 209 | |
| 210 | Mutex::Mutex() { InitializeCriticalSection(&mutex_); SetIsSafe(); } |
| 211 | Mutex::~Mutex() { DeleteCriticalSection(&mutex_); } |
| 212 | void Mutex::Lock() { if (is_safe_) EnterCriticalSection(&mutex_); } |
| 213 | void Mutex::Unlock() { if (is_safe_) LeaveCriticalSection(&mutex_); } |
| 214 | #ifdef GMUTEX_TRYLOCK |
| 215 | bool Mutex::TryLock() { return is_safe_ ? |
| 216 | TryEnterCriticalSection(&mutex_) != 0 : true; } |
| 217 | #endif |
| 218 | void Mutex::ReaderLock() { Lock(); } // we don't have read-write locks |
| 219 | void Mutex::ReaderUnlock() { Unlock(); } |
| 220 | |
| 221 | #elif defined(CERES_HAVE_PTHREAD) && defined(CERES_HAVE_RWLOCK) |
| 222 | |
| 223 | #define SAFE_PTHREAD(fncall) do { /* run fncall if is_safe_ is true */ \ |
| 224 | if (is_safe_ && fncall(&mutex_) != 0) abort(); \ |
| 225 | } while (0) |
| 226 | |
| 227 | Mutex::Mutex() { |
| 228 | SetIsSafe(); |
| 229 | if (is_safe_ && pthread_rwlock_init(&mutex_, NULL) != 0) abort(); |
| 230 | } |
| 231 | Mutex::~Mutex() { SAFE_PTHREAD(pthread_rwlock_destroy); } |
| 232 | void Mutex::Lock() { SAFE_PTHREAD(pthread_rwlock_wrlock); } |
| 233 | void Mutex::Unlock() { SAFE_PTHREAD(pthread_rwlock_unlock); } |
| 234 | #ifdef GMUTEX_TRYLOCK |
| 235 | bool Mutex::TryLock() { return is_safe_ ? |
| 236 | pthread_rwlock_trywrlock(&mutex_) == 0 : |
| 237 | true; } |
| 238 | #endif |
| 239 | void Mutex::ReaderLock() { SAFE_PTHREAD(pthread_rwlock_rdlock); } |
| 240 | void Mutex::ReaderUnlock() { SAFE_PTHREAD(pthread_rwlock_unlock); } |
| 241 | #undef SAFE_PTHREAD |
| 242 | |
| 243 | #elif defined(CERES_HAVE_PTHREAD) |
| 244 | |
| 245 | #define SAFE_PTHREAD(fncall) do { /* run fncall if is_safe_ is true */ \ |
| 246 | if (is_safe_ && fncall(&mutex_) != 0) abort(); \ |
| 247 | } while (0) |
| 248 | |
| 249 | Mutex::Mutex() { |
| 250 | SetIsSafe(); |
| 251 | if (is_safe_ && pthread_mutex_init(&mutex_, NULL) != 0) abort(); |
| 252 | } |
| 253 | Mutex::~Mutex() { SAFE_PTHREAD(pthread_mutex_destroy); } |
| 254 | void Mutex::Lock() { SAFE_PTHREAD(pthread_mutex_lock); } |
| 255 | void Mutex::Unlock() { SAFE_PTHREAD(pthread_mutex_unlock); } |
| 256 | #ifdef GMUTEX_TRYLOCK |
| 257 | bool Mutex::TryLock() { return is_safe_ ? |
| 258 | pthread_mutex_trylock(&mutex_) == 0 : true; } |
| 259 | #endif |
| 260 | void Mutex::ReaderLock() { Lock(); } |
| 261 | void Mutex::ReaderUnlock() { Unlock(); } |
| 262 | #undef SAFE_PTHREAD |
| 263 | |
| 264 | #endif |
| 265 | |
| 266 | // -------------------------------------------------------------------------- |
| 267 | // Some helper classes |
| 268 | |
| 269 | // MutexLock(mu) acquires mu when constructed and releases it when destroyed. |
| 270 | class MutexLock { |
| 271 | public: |
| 272 | explicit MutexLock(Mutex *mu) : mu_(mu) { mu_->Lock(); } |
| 273 | ~MutexLock() { mu_->Unlock(); } |
| 274 | private: |
| 275 | Mutex * const mu_; |
| 276 | // Disallow "evil" constructors |
| 277 | MutexLock(const MutexLock&); |
| 278 | void operator=(const MutexLock&); |
| 279 | }; |
| 280 | |
| 281 | // ReaderMutexLock and WriterMutexLock do the same, for rwlocks |
| 282 | class ReaderMutexLock { |
| 283 | public: |
| 284 | explicit ReaderMutexLock(Mutex *mu) : mu_(mu) { mu_->ReaderLock(); } |
| 285 | ~ReaderMutexLock() { mu_->ReaderUnlock(); } |
| 286 | private: |
| 287 | Mutex * const mu_; |
| 288 | // Disallow "evil" constructors |
| 289 | ReaderMutexLock(const ReaderMutexLock&); |
| 290 | void operator=(const ReaderMutexLock&); |
| 291 | }; |
| 292 | |
| 293 | class WriterMutexLock { |
| 294 | public: |
| 295 | explicit WriterMutexLock(Mutex *mu) : mu_(mu) { mu_->WriterLock(); } |
| 296 | ~WriterMutexLock() { mu_->WriterUnlock(); } |
| 297 | private: |
| 298 | Mutex * const mu_; |
| 299 | // Disallow "evil" constructors |
| 300 | WriterMutexLock(const WriterMutexLock&); |
| 301 | void operator=(const WriterMutexLock&); |
| 302 | }; |
| 303 | |
| 304 | // Catch bug where variable name is omitted, e.g. MutexLock (&mu); |
| 305 | #define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_decl_missing_var_name) |
| 306 | #define ReaderMutexLock(x) COMPILE_ASSERT(0, rmutex_lock_decl_missing_var_name) |
| 307 | #define WriterMutexLock(x) COMPILE_ASSERT(0, wmutex_lock_decl_missing_var_name) |
| 308 | |
| 309 | } // namespace internal |
| 310 | } // namespace ceres |
| 311 | |
| 312 | #endif // CERES_INTERNAL_MUTEX_H_ |