Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/schur_eliminator.h" |
| 32 | |
| 33 | #include <glog/logging.h> |
| 34 | #include "ceres/file.h" |
| 35 | #include "gtest/gtest.h" |
| 36 | #include "Eigen/Dense" |
| 37 | #include "ceres/block_random_access_dense_matrix.h" |
| 38 | #include "ceres/block_sparse_matrix.h" |
| 39 | #include "ceres/casts.h" |
| 40 | #include "ceres/detect_structure.h" |
| 41 | #include "ceres/linear_least_squares_problems.h" |
| 42 | #include "ceres/triplet_sparse_matrix.h" |
| 43 | #include "ceres/internal/eigen.h" |
| 44 | #include "ceres/internal/scoped_ptr.h" |
| 45 | #include "ceres/types.h" |
| 46 | |
| 47 | // TODO(sameeragarwal): Reduce the size of these tests and redo the |
| 48 | // parameterization to be more efficient. |
| 49 | |
| 50 | DECLARE_string(test_srcdir); |
| 51 | |
| 52 | namespace ceres { |
| 53 | namespace internal { |
| 54 | |
| 55 | class SchurEliminatorTest : public ::testing::Test { |
| 56 | protected: |
| 57 | void SetUpFromId(int id) { |
| 58 | scoped_ptr<LinearLeastSquaresProblem> |
| 59 | problem(CreateLinearLeastSquaresProblemFromId(id)); |
| 60 | CHECK_NOTNULL(problem.get()); |
| 61 | SetupHelper(problem.get()); |
| 62 | } |
| 63 | |
| 64 | void SetUpFromFilename(const string& filename) { |
| 65 | scoped_ptr<LinearLeastSquaresProblem> |
| 66 | problem(CreateLinearLeastSquaresProblemFromFile(filename)); |
| 67 | CHECK_NOTNULL(problem.get()); |
| 68 | SetupHelper(problem.get()); |
| 69 | } |
| 70 | |
| 71 | void SetupHelper(LinearLeastSquaresProblem* problem) { |
| 72 | A.reset(down_cast<BlockSparseMatrix*>(problem->A.release())); |
| 73 | b.reset(problem->b.release()); |
| 74 | D.reset(problem->D.release()); |
| 75 | |
| 76 | num_eliminate_blocks = problem->num_eliminate_blocks; |
| 77 | num_eliminate_cols = 0; |
| 78 | const CompressedRowBlockStructure* bs = A->block_structure(); |
| 79 | |
| 80 | for (int i = 0; i < num_eliminate_blocks; ++i) { |
| 81 | num_eliminate_cols += bs->cols[i].size; |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | // Compute the golden values for the reduced linear system and the |
| 86 | // solution to the linear least squares problem using dense linear |
| 87 | // algebra. |
| 88 | void ComputeReferenceSolution(const Vector& D) { |
| 89 | Matrix J; |
| 90 | A->ToDenseMatrix(&J); |
| 91 | VectorRef f(b.get(), J.rows()); |
| 92 | |
| 93 | Matrix H = (D.cwiseProduct(D)).asDiagonal(); |
| 94 | H.noalias() += J.transpose() * J; |
| 95 | |
| 96 | const Vector g = J.transpose() * f; |
| 97 | const int schur_size = J.cols() - num_eliminate_cols; |
| 98 | |
| 99 | lhs_expected.resize(schur_size, schur_size); |
| 100 | lhs_expected.setZero(); |
| 101 | |
| 102 | rhs_expected.resize(schur_size); |
| 103 | rhs_expected.setZero(); |
| 104 | |
| 105 | sol_expected.resize(J.cols()); |
| 106 | sol_expected.setZero(); |
| 107 | |
| 108 | Matrix P = H.block(0, 0, num_eliminate_cols, num_eliminate_cols); |
| 109 | Matrix Q = H.block(0, |
| 110 | num_eliminate_cols, |
| 111 | num_eliminate_cols, |
| 112 | schur_size); |
| 113 | Matrix R = H.block(num_eliminate_cols, |
| 114 | num_eliminate_cols, |
| 115 | schur_size, |
| 116 | schur_size); |
| 117 | int row = 0; |
| 118 | const CompressedRowBlockStructure* bs = A->block_structure(); |
| 119 | for (int i = 0; i < num_eliminate_blocks; ++i) { |
| 120 | const int block_size = bs->cols[i].size; |
| 121 | P.block(row, row, block_size, block_size) = |
| 122 | P |
| 123 | .block(row, row, block_size, block_size) |
| 124 | .ldlt() |
| 125 | .solve(Matrix::Identity(block_size, block_size)); |
| 126 | row += block_size; |
| 127 | } |
| 128 | |
| 129 | lhs_expected |
| 130 | .triangularView<Eigen::Upper>() = R - Q.transpose() * P * Q; |
| 131 | rhs_expected = |
| 132 | g.tail(schur_size) - Q.transpose() * P * g.head(num_eliminate_cols); |
| 133 | sol_expected = H.ldlt().solve(g); |
| 134 | } |
| 135 | |
| 136 | void EliminateSolveAndCompare(const VectorRef& diagonal, |
| 137 | bool use_static_structure, |
| 138 | const double relative_tolerance) { |
| 139 | const CompressedRowBlockStructure* bs = A->block_structure(); |
| 140 | const int num_col_blocks = bs->cols.size(); |
| 141 | vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0); |
| 142 | for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) { |
| 143 | blocks[i - num_eliminate_blocks] = bs->cols[i].size; |
| 144 | } |
| 145 | |
| 146 | BlockRandomAccessDenseMatrix lhs(blocks); |
| 147 | |
| 148 | const int num_cols = A->num_cols(); |
| 149 | const int schur_size = lhs.num_rows(); |
| 150 | |
| 151 | Vector rhs(schur_size); |
| 152 | |
| 153 | LinearSolver::Options options; |
| 154 | options.num_eliminate_blocks = num_eliminate_blocks; |
| 155 | if (use_static_structure) { |
| 156 | DetectStructure(*bs, |
| 157 | options.num_eliminate_blocks, |
| 158 | &options.row_block_size, |
| 159 | &options.e_block_size, |
| 160 | &options.f_block_size); |
| 161 | } |
| 162 | |
| 163 | scoped_ptr<SchurEliminatorBase> eliminator; |
| 164 | eliminator.reset(SchurEliminatorBase::Create(options)); |
| 165 | eliminator->Init(num_eliminate_blocks, A->block_structure()); |
| 166 | eliminator->Eliminate(A.get(), b.get(), diagonal.data(), &lhs, rhs.data()); |
| 167 | |
| 168 | MatrixRef lhs_ref(lhs.mutable_values(), lhs.num_rows(), lhs.num_cols()); |
| 169 | Vector reduced_sol = |
| 170 | lhs_ref |
| 171 | .selfadjointView<Eigen::Upper>() |
| 172 | .ldlt() |
| 173 | .solve(rhs); |
| 174 | |
| 175 | // Solution to the linear least squares problem. |
| 176 | Vector sol(num_cols); |
| 177 | sol.setZero(); |
| 178 | sol.tail(schur_size) = reduced_sol; |
| 179 | eliminator->BackSubstitute(A.get(), |
| 180 | b.get(), |
| 181 | diagonal.data(), |
| 182 | reduced_sol.data(), |
| 183 | sol.data()); |
| 184 | |
| 185 | Matrix delta = (lhs_ref - lhs_expected).selfadjointView<Eigen::Upper>(); |
| 186 | double diff = delta.norm(); |
| 187 | EXPECT_NEAR(diff / lhs_expected.norm(), 0.0, relative_tolerance); |
| 188 | EXPECT_NEAR((rhs - rhs_expected).norm() / rhs_expected.norm(), 0.0, |
| 189 | relative_tolerance); |
| 190 | EXPECT_NEAR((sol - sol_expected).norm() / sol_expected.norm(), 0.0, |
| 191 | relative_tolerance); |
| 192 | } |
| 193 | |
| 194 | scoped_ptr<BlockSparseMatrix> A; |
| 195 | scoped_array<double> b; |
| 196 | scoped_array<double> D; |
| 197 | int num_eliminate_blocks; |
| 198 | int num_eliminate_cols; |
| 199 | |
| 200 | Matrix lhs_expected; |
| 201 | Vector rhs_expected; |
| 202 | Vector sol_expected; |
| 203 | }; |
| 204 | |
| 205 | TEST_F(SchurEliminatorTest, ScalarProblem) { |
| 206 | SetUpFromId(2); |
| 207 | Vector zero(A->num_cols()); |
| 208 | zero.setZero(); |
| 209 | |
| 210 | ComputeReferenceSolution(VectorRef(zero.data(), A->num_cols())); |
| 211 | EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), true, 1e-14); |
| 212 | EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), false, 1e-14); |
| 213 | |
| 214 | ComputeReferenceSolution(VectorRef(D.get(), A->num_cols())); |
| 215 | EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-14); |
| 216 | EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-14); |
| 217 | } |
| 218 | |
| 219 | #ifndef CERES_DONT_HAVE_PROTOCOL_BUFFERS |
| 220 | TEST_F(SchurEliminatorTest, BlockProblem) { |
| 221 | const string input_file = |
| 222 | JoinPath(FLAGS_test_srcdir, |
| 223 | "problem-6-1384-000.lsqp"); // NOLINT |
| 224 | |
| 225 | SetUpFromFilename(input_file); |
| 226 | ComputeReferenceSolution(VectorRef(D.get(), A->num_cols())); |
| 227 | EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-10); |
| 228 | EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-10); |
| 229 | } |
| 230 | #endif // CERES_DONT_HAVE_PROTOCOL_BUFFERS |
| 231 | |
| 232 | } // namespace internal |
| 233 | } // namespace ceres |