Keir Mierle | 6e8bd50 | 2013-05-23 01:49:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2013 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: mierle@gmail.com (Keir Mierle) |
| 30 | |
| 31 | #include "ceres/c_api.h" |
| 32 | |
| 33 | #include <cmath> |
| 34 | |
| 35 | #include "glog/logging.h" |
| 36 | #include "gtest/gtest.h" |
| 37 | |
| 38 | // Duplicated from curve_fitting.cc. |
| 39 | int num_observations = 67; |
| 40 | double data[] = { |
| 41 | 0.000000e+00, 1.133898e+00, |
| 42 | 7.500000e-02, 1.334902e+00, |
| 43 | 1.500000e-01, 1.213546e+00, |
| 44 | 2.250000e-01, 1.252016e+00, |
| 45 | 3.000000e-01, 1.392265e+00, |
| 46 | 3.750000e-01, 1.314458e+00, |
| 47 | 4.500000e-01, 1.472541e+00, |
| 48 | 5.250000e-01, 1.536218e+00, |
| 49 | 6.000000e-01, 1.355679e+00, |
| 50 | 6.750000e-01, 1.463566e+00, |
| 51 | 7.500000e-01, 1.490201e+00, |
| 52 | 8.250000e-01, 1.658699e+00, |
| 53 | 9.000000e-01, 1.067574e+00, |
| 54 | 9.750000e-01, 1.464629e+00, |
| 55 | 1.050000e+00, 1.402653e+00, |
| 56 | 1.125000e+00, 1.713141e+00, |
| 57 | 1.200000e+00, 1.527021e+00, |
| 58 | 1.275000e+00, 1.702632e+00, |
| 59 | 1.350000e+00, 1.423899e+00, |
| 60 | 1.425000e+00, 1.543078e+00, |
| 61 | 1.500000e+00, 1.664015e+00, |
| 62 | 1.575000e+00, 1.732484e+00, |
| 63 | 1.650000e+00, 1.543296e+00, |
| 64 | 1.725000e+00, 1.959523e+00, |
| 65 | 1.800000e+00, 1.685132e+00, |
| 66 | 1.875000e+00, 1.951791e+00, |
| 67 | 1.950000e+00, 2.095346e+00, |
| 68 | 2.025000e+00, 2.361460e+00, |
| 69 | 2.100000e+00, 2.169119e+00, |
| 70 | 2.175000e+00, 2.061745e+00, |
| 71 | 2.250000e+00, 2.178641e+00, |
| 72 | 2.325000e+00, 2.104346e+00, |
| 73 | 2.400000e+00, 2.584470e+00, |
| 74 | 2.475000e+00, 1.914158e+00, |
| 75 | 2.550000e+00, 2.368375e+00, |
| 76 | 2.625000e+00, 2.686125e+00, |
| 77 | 2.700000e+00, 2.712395e+00, |
| 78 | 2.775000e+00, 2.499511e+00, |
| 79 | 2.850000e+00, 2.558897e+00, |
| 80 | 2.925000e+00, 2.309154e+00, |
| 81 | 3.000000e+00, 2.869503e+00, |
| 82 | 3.075000e+00, 3.116645e+00, |
| 83 | 3.150000e+00, 3.094907e+00, |
| 84 | 3.225000e+00, 2.471759e+00, |
| 85 | 3.300000e+00, 3.017131e+00, |
| 86 | 3.375000e+00, 3.232381e+00, |
| 87 | 3.450000e+00, 2.944596e+00, |
| 88 | 3.525000e+00, 3.385343e+00, |
| 89 | 3.600000e+00, 3.199826e+00, |
| 90 | 3.675000e+00, 3.423039e+00, |
| 91 | 3.750000e+00, 3.621552e+00, |
| 92 | 3.825000e+00, 3.559255e+00, |
| 93 | 3.900000e+00, 3.530713e+00, |
| 94 | 3.975000e+00, 3.561766e+00, |
| 95 | 4.050000e+00, 3.544574e+00, |
| 96 | 4.125000e+00, 3.867945e+00, |
| 97 | 4.200000e+00, 4.049776e+00, |
| 98 | 4.275000e+00, 3.885601e+00, |
| 99 | 4.350000e+00, 4.110505e+00, |
| 100 | 4.425000e+00, 4.345320e+00, |
| 101 | 4.500000e+00, 4.161241e+00, |
| 102 | 4.575000e+00, 4.363407e+00, |
| 103 | 4.650000e+00, 4.161576e+00, |
| 104 | 4.725000e+00, 4.619728e+00, |
| 105 | 4.800000e+00, 4.737410e+00, |
| 106 | 4.875000e+00, 4.727863e+00, |
| 107 | 4.950000e+00, 4.669206e+00, |
| 108 | }; |
| 109 | |
| 110 | // A test cost function, similar to the one in curve_fitting.c. |
| 111 | int exponential_residual(void* user_data, |
| 112 | double** parameters, |
| 113 | double* residuals, |
| 114 | double** jacobians) { |
| 115 | double* measurement = (double*) user_data; |
| 116 | double x = measurement[0]; |
| 117 | double y = measurement[1]; |
| 118 | double m = parameters[0][0]; |
| 119 | double c = parameters[1][0]; |
| 120 | |
| 121 | residuals[0] = y - exp(m * x + c); |
| 122 | if (jacobians == NULL) { |
| 123 | return 1; |
| 124 | } |
| 125 | if (jacobians[0] != NULL) { |
| 126 | jacobians[0][0] = - x * exp(m * x + c); // dr/dm |
| 127 | } |
| 128 | if (jacobians[1] != NULL) { |
| 129 | jacobians[1][0] = - exp(m * x + c); // dr/dc |
| 130 | } |
| 131 | return 1; |
| 132 | } |
| 133 | |
| 134 | namespace ceres { |
| 135 | namespace internal { |
| 136 | |
| 137 | TEST(C_API, SimpleEndToEndTest) { |
| 138 | double m = 0.0; |
| 139 | double c = 0.0; |
| 140 | double *parameter_pointers[] = { &m, &c }; |
| 141 | int parameter_sizes[] = { 1, 1 }; |
| 142 | |
| 143 | ceres_problem_t* problem = ceres_create_problem(); |
| 144 | for (int i = 0; i < num_observations; ++i) { |
| 145 | ceres_problem_add_residual_block( |
| 146 | problem, |
| 147 | exponential_residual, // Cost function |
| 148 | &data[2 * i], // Points to the (x,y) measurement |
| 149 | NULL, // Loss function |
| 150 | NULL, // Loss function user data |
| 151 | 1, // Number of residuals |
| 152 | 2, // Number of parameter blocks |
| 153 | parameter_sizes, |
| 154 | parameter_pointers); |
| 155 | } |
| 156 | |
| 157 | ceres_solve(problem); |
| 158 | |
| 159 | EXPECT_NEAR(0.3, m, 0.02); |
| 160 | EXPECT_NEAR(0.1, c, 0.04); |
| 161 | |
| 162 | ceres_free_problem(problem); |
| 163 | } |
| 164 | |
| 165 | template<typename T> |
| 166 | class ScopedSetValue { |
| 167 | public: |
| 168 | ScopedSetValue(T* variable, T new_value) |
| 169 | : variable_(variable), old_value_(*variable) { |
| 170 | *variable = new_value; |
| 171 | } |
| 172 | ~ScopedSetValue() { |
| 173 | *variable_ = old_value_; |
| 174 | } |
| 175 | |
| 176 | private: |
| 177 | T* variable_; |
| 178 | T old_value_; |
| 179 | }; |
| 180 | |
| 181 | TEST(C_API, LossFunctions) { |
| 182 | double m = 0.2; |
| 183 | double c = 0.03; |
| 184 | double *parameter_pointers[] = { &m, &c }; |
| 185 | int parameter_sizes[] = { 1, 1 }; |
| 186 | |
| 187 | // Create two outliers, but be careful to leave the data intact. |
| 188 | ScopedSetValue<double> outlier1x(&data[12], 2.5); |
| 189 | ScopedSetValue<double> outlier1y(&data[13], 1.0e3); |
| 190 | ScopedSetValue<double> outlier2x(&data[14], 3.2); |
| 191 | ScopedSetValue<double> outlier2y(&data[15], 30e3); |
| 192 | |
| 193 | // Create a cauchy cost function, and reuse it many times. |
| 194 | void* cauchy_loss_data = |
| 195 | ceres_create_cauchy_loss_function_data(5.0); |
| 196 | |
| 197 | ceres_problem_t* problem = ceres_create_problem(); |
| 198 | for (int i = 0; i < num_observations; ++i) { |
| 199 | ceres_problem_add_residual_block( |
| 200 | problem, |
| 201 | exponential_residual, // Cost function |
| 202 | &data[2 * i], // Points to the (x,y) measurement |
| 203 | ceres_stock_loss_function, |
| 204 | cauchy_loss_data, // Loss function user data |
| 205 | 1, // Number of residuals |
| 206 | 2, // Number of parameter blocks |
| 207 | parameter_sizes, |
| 208 | parameter_pointers); |
| 209 | } |
| 210 | |
| 211 | ceres_solve(problem); |
| 212 | |
| 213 | EXPECT_NEAR(0.3, m, 0.02); |
| 214 | EXPECT_NEAR(0.1, c, 0.04); |
| 215 | |
| 216 | ceres_free_stock_loss_function_data(cauchy_loss_data); |
| 217 | ceres_free_problem(problem); |
| 218 | } |
| 219 | |
| 220 | } // namespace internal |
| 221 | } // namespace ceres |