blob: b09d25397763ab5089d43513c8786dc26ae4432f [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/implicit_schur_complement.h"
32
33#include <glog/logging.h>
34#include "Eigen/Dense"
35#include "ceres/block_sparse_matrix.h"
36#include "ceres/block_structure.h"
37#include "ceres/internal/eigen.h"
38#include "ceres/internal/scoped_ptr.h"
39#include "ceres/types.h"
40
41namespace ceres {
42namespace internal {
43
44ImplicitSchurComplement::ImplicitSchurComplement(int num_eliminate_blocks,
Keir Mierle8ebb0732012-04-30 23:09:08 -070045 bool preconditioner)
46 : num_eliminate_blocks_(num_eliminate_blocks),
Keir Mierle8ebb0732012-04-30 23:09:08 -070047 preconditioner_(preconditioner),
48 A_(NULL),
49 D_(NULL),
50 b_(NULL),
51 block_diagonal_EtE_inverse_(NULL),
52 block_diagonal_FtF_inverse_(NULL) {
53}
54
55ImplicitSchurComplement::~ImplicitSchurComplement() {
56}
57
58void ImplicitSchurComplement::Init(const BlockSparseMatrixBase& A,
59 const double* D,
60 const double* b) {
61 // Since initialization is reasonably heavy, perhaps we can save on
62 // constructing a new object everytime.
Sameer Agarwala9d8ef82012-05-14 02:28:05 -070063 if (A_ == NULL) {
Keir Mierle8ebb0732012-04-30 23:09:08 -070064 A_.reset(new PartitionedMatrixView(A, num_eliminate_blocks_));
65 }
66
67 D_ = D;
68 b_ = b;
69
70 // Initialize temporary storage and compute the block diagonals of
71 // E'E and F'E.
Sameer Agarwala9d8ef82012-05-14 02:28:05 -070072 if (block_diagonal_EtE_inverse_ == NULL) {
Keir Mierle8ebb0732012-04-30 23:09:08 -070073 block_diagonal_EtE_inverse_.reset(A_->CreateBlockDiagonalEtE());
74 if (preconditioner_) {
75 block_diagonal_FtF_inverse_.reset(A_->CreateBlockDiagonalFtF());
76 }
77 rhs_.resize(A_->num_cols_f());
78 rhs_.setZero();
79 tmp_rows_.resize(A_->num_rows());
80 tmp_e_cols_.resize(A_->num_cols_e());
81 tmp_e_cols_2_.resize(A_->num_cols_e());
82 tmp_f_cols_.resize(A_->num_cols_f());
83 } else {
84 A_->UpdateBlockDiagonalEtE(block_diagonal_EtE_inverse_.get());
85 if (preconditioner_) {
86 A_->UpdateBlockDiagonalFtF(block_diagonal_FtF_inverse_.get());
87 }
88 }
89
90 // The block diagonals of the augmented linear system contain
91 // contributions from the diagonal D if it is non-null. Add that to
92 // the block diagonals and invert them.
Sameer Agarwala9d8ef82012-05-14 02:28:05 -070093 AddDiagonalAndInvert(D_, block_diagonal_EtE_inverse_.get());
94 if (preconditioner_) {
95 AddDiagonalAndInvert((D_ == NULL) ? NULL : D_ + A_->num_cols_e(),
96 block_diagonal_FtF_inverse_.get());
Keir Mierle8ebb0732012-04-30 23:09:08 -070097 }
98
99 // Compute the RHS of the Schur complement system.
100 UpdateRhs();
101}
102
103// Evaluate the product
104//
105// Sx = [F'F - F'E (E'E)^-1 E'F]x
106//
107// By breaking it down into individual matrix vector products
108// involving the matrices E and F. This is implemented using a
109// PartitionedMatrixView of the input matrix A.
110void ImplicitSchurComplement::RightMultiply(const double* x, double* y) const {
111 // y1 = F x
112 tmp_rows_.setZero();
113 A_->RightMultiplyF(x, tmp_rows_.data());
114
115 // y2 = E' y1
116 tmp_e_cols_.setZero();
117 A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
118
119 // y3 = -(E'E)^-1 y2
120 tmp_e_cols_2_.setZero();
121 block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(),
122 tmp_e_cols_2_.data());
123 tmp_e_cols_2_ *= -1.0;
124
125 // y1 = y1 + E y3
126 A_->RightMultiplyE(tmp_e_cols_2_.data(), tmp_rows_.data());
127
128 // y5 = D * x
129 if (D_ != NULL) {
130 ConstVectorRef Dref(D_ + A_->num_cols_e(), num_cols());
131 VectorRef(y, num_cols()) =
132 (Dref.array().square() *
133 ConstVectorRef(x, num_cols()).array()).matrix();
134 } else {
135 VectorRef(y, num_cols()).setZero();
136 }
137
138 // y = y5 + F' y1
139 A_->LeftMultiplyF(tmp_rows_.data(), y);
140}
141
142// Given a block diagonal matrix and an optional array of diagonal
143// entries D, add them to the diagonal of the matrix and compute the
144// inverse of each diagonal block.
145void ImplicitSchurComplement::AddDiagonalAndInvert(
146 const double* D,
147 BlockSparseMatrix* block_diagonal) {
148 const CompressedRowBlockStructure* block_diagonal_structure =
149 block_diagonal->block_structure();
150 for (int r = 0; r < block_diagonal_structure->rows.size(); ++r) {
151 const int row_block_pos = block_diagonal_structure->rows[r].block.position;
152 const int row_block_size = block_diagonal_structure->rows[r].block.size;
153 const Cell& cell = block_diagonal_structure->rows[r].cells[0];
154 MatrixRef m(block_diagonal->mutable_values() + cell.position,
155 row_block_size, row_block_size);
156
157 if (D != NULL) {
158 ConstVectorRef d(D + row_block_pos, row_block_size);
159 m += d.array().square().matrix().asDiagonal();
160 }
161
162 m = m
163 .selfadjointView<Eigen::Upper>()
164 .ldlt()
165 .solve(Matrix::Identity(row_block_size, row_block_size));
166 }
167}
168
169// Similar to RightMultiply, use the block structure of the matrix A
170// to compute y = (E'E)^-1 (E'b - E'F x).
171void ImplicitSchurComplement::BackSubstitute(const double* x, double* y) {
172 const int num_cols_e = A_->num_cols_e();
173 const int num_cols_f = A_->num_cols_f();
174 const int num_cols = A_->num_cols();
175 const int num_rows = A_->num_rows();
176
177 // y1 = F x
178 tmp_rows_.setZero();
179 A_->RightMultiplyF(x, tmp_rows_.data());
180
181 // y2 = b - y1
182 tmp_rows_ = ConstVectorRef(b_, num_rows) - tmp_rows_;
183
184 // y3 = E' y2
185 tmp_e_cols_.setZero();
186 A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
187
188 // y = (E'E)^-1 y3
189 VectorRef(y, num_cols).setZero();
190 block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y);
191
192 // The full solution vector y has two blocks. The first block of
193 // variables corresponds to the eliminated variables, which we just
194 // computed via back substitution. The second block of variables
195 // corresponds to the Schur complement system, so we just copy those
196 // values from the solution to the Schur complement.
197 VectorRef(y + num_cols_e, num_cols_f) = ConstVectorRef(x, num_cols_f);
198}
199
200// Compute the RHS of the Schur complement system.
201//
202// rhs = F'b - F'E (E'E)^-1 E'b
203//
204// Like BackSubstitute, we use the block structure of A to implement
205// this using a series of matrix vector products.
206void ImplicitSchurComplement::UpdateRhs() {
207 // y1 = E'b
208 tmp_e_cols_.setZero();
209 A_->LeftMultiplyE(b_, tmp_e_cols_.data());
210
211 // y2 = (E'E)^-1 y1
212 Vector y2 = Vector::Zero(A_->num_cols_e());
213 block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y2.data());
214
215 // y3 = E y2
216 tmp_rows_.setZero();
217 A_->RightMultiplyE(y2.data(), tmp_rows_.data());
218
219 // y3 = b - y3
220 tmp_rows_ = ConstVectorRef(b_, A_->num_rows()) - tmp_rows_;
221
222 // rhs = F' y3
223 rhs_.setZero();
224 A_->LeftMultiplyF(tmp_rows_.data(), rhs_.data());
225}
226
227} // namespace internal
228} // namespace ceres