Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 10 |
| 32 | |
| 33 | #include "ceres/partitioned_matrix_view.h" |
| 34 | |
| 35 | #include <algorithm> |
| 36 | #include <cstring> |
| 37 | #include <vector> |
| 38 | #include <glog/logging.h> |
| 39 | #include "ceres/block_sparse_matrix.h" |
| 40 | #include "ceres/block_structure.h" |
| 41 | #include "ceres/internal/eigen.h" |
| 42 | |
| 43 | namespace ceres { |
| 44 | namespace internal { |
| 45 | |
| 46 | PartitionedMatrixView::PartitionedMatrixView( |
| 47 | const BlockSparseMatrixBase& matrix, |
| 48 | int num_col_blocks_a) |
| 49 | : matrix_(matrix), |
| 50 | num_col_blocks_e_(num_col_blocks_a) { |
| 51 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 52 | CHECK_NOTNULL(bs); |
| 53 | |
| 54 | num_col_blocks_f_ = bs->cols.size() - num_col_blocks_a; |
| 55 | |
| 56 | // Compute the number of row blocks in E. The number of row blocks |
| 57 | // in E maybe less than the number of row blocks in the input matrix |
| 58 | // as some of the row blocks at the bottom may not have any |
| 59 | // e_blocks. For a definition of what an e_block is, please see |
| 60 | // explicit_schur_complement_solver.h |
| 61 | num_row_blocks_e_ = 0; |
| 62 | for (int r = 0; r < bs->rows.size(); ++r) { |
| 63 | const vector<Cell>& cells = bs->rows[r].cells; |
| 64 | if (cells[0].block_id < num_col_blocks_a) { |
| 65 | ++num_row_blocks_e_; |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | // Compute the number of columns in E and F. |
| 70 | num_cols_e_ = 0; |
| 71 | num_cols_f_ = 0; |
| 72 | |
| 73 | for (int c = 0; c < bs->cols.size(); ++c) { |
| 74 | const Block& block = bs->cols[c]; |
| 75 | if (c < num_col_blocks_a) { |
| 76 | num_cols_e_ += block.size; |
| 77 | } else { |
| 78 | num_cols_f_ += block.size; |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | CHECK_EQ(num_cols_e_ + num_cols_f_, matrix_.num_cols()); |
| 83 | } |
| 84 | |
| 85 | PartitionedMatrixView::~PartitionedMatrixView() { |
| 86 | } |
| 87 | |
| 88 | // The next four methods don't seem to be particularly cache |
| 89 | // friendly. This is an artifact of how the BlockStructure of the |
| 90 | // input matrix is constructed. These methods will benefit from |
| 91 | // multithreading as well as improved data layout. |
| 92 | |
| 93 | void PartitionedMatrixView::RightMultiplyE(const double* x, double* y) const { |
| 94 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 95 | |
| 96 | // Iterate over the first num_row_blocks_e_ row blocks, and multiply |
| 97 | // by the first cell in each row block. |
| 98 | for (int r = 0; r < num_row_blocks_e_; ++r) { |
| 99 | const double* row_values = matrix_.RowBlockValues(r); |
| 100 | const Cell& cell = bs->rows[r].cells[0]; |
| 101 | const int row_block_pos = bs->rows[r].block.position; |
| 102 | const int row_block_size = bs->rows[r].block.size; |
| 103 | const int col_block_id = cell.block_id; |
| 104 | const int col_block_pos = bs->cols[col_block_id].position; |
| 105 | const int col_block_size = bs->cols[col_block_id].size; |
| 106 | |
| 107 | ConstVectorRef xref(x + col_block_pos, col_block_size); |
| 108 | VectorRef yref(y + row_block_pos, row_block_size); |
| 109 | ConstMatrixRef m(row_values + cell.position, |
| 110 | row_block_size, |
| 111 | col_block_size); |
| 112 | yref += m.lazyProduct(xref); |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | void PartitionedMatrixView::RightMultiplyF(const double* x, double* y) const { |
| 117 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 118 | |
| 119 | // Iterate over row blocks, and if the row block is in E, then |
| 120 | // multiply by all the cells except the first one which is of type |
| 121 | // E. If the row block is not in E (i.e its in the bottom |
| 122 | // num_row_blocks - num_row_blocks_e row blocks), then all the cells |
| 123 | // are of type F and multiply by them all. |
| 124 | for (int r = 0; r < bs->rows.size(); ++r) { |
| 125 | const int row_block_pos = bs->rows[r].block.position; |
| 126 | const int row_block_size = bs->rows[r].block.size; |
| 127 | VectorRef yref(y + row_block_pos, row_block_size); |
| 128 | const vector<Cell>& cells = bs->rows[r].cells; |
| 129 | for (int c = (r < num_row_blocks_e_) ? 1 : 0; c < cells.size(); ++c) { |
| 130 | const double* row_values = matrix_.RowBlockValues(r); |
| 131 | const int col_block_id = cells[c].block_id; |
| 132 | const int col_block_pos = bs->cols[col_block_id].position; |
| 133 | const int col_block_size = bs->cols[col_block_id].size; |
| 134 | |
| 135 | ConstVectorRef xref(x + col_block_pos - num_cols_e(), |
| 136 | col_block_size); |
| 137 | ConstMatrixRef m(row_values + cells[c].position, |
| 138 | row_block_size, |
| 139 | col_block_size); |
| 140 | yref += m.lazyProduct(xref); |
| 141 | } |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | void PartitionedMatrixView::LeftMultiplyE(const double* x, double* y) const { |
| 146 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 147 | |
| 148 | // Iterate over the first num_row_blocks_e_ row blocks, and multiply |
| 149 | // by the first cell in each row block. |
| 150 | for (int r = 0; r < num_row_blocks_e_; ++r) { |
| 151 | const Cell& cell = bs->rows[r].cells[0]; |
| 152 | const double* row_values = matrix_.RowBlockValues(r); |
| 153 | const int row_block_pos = bs->rows[r].block.position; |
| 154 | const int row_block_size = bs->rows[r].block.size; |
| 155 | const int col_block_id = cell.block_id; |
| 156 | const int col_block_pos = bs->cols[col_block_id].position; |
| 157 | const int col_block_size = bs->cols[col_block_id].size; |
| 158 | |
| 159 | ConstVectorRef xref(x + row_block_pos, row_block_size); |
| 160 | VectorRef yref(y + col_block_pos, col_block_size); |
| 161 | ConstMatrixRef m(row_values + cell.position, |
| 162 | row_block_size, |
| 163 | col_block_size); |
| 164 | yref += m.transpose().lazyProduct(xref); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | void PartitionedMatrixView::LeftMultiplyF(const double* x, double* y) const { |
| 169 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 170 | |
| 171 | // Iterate over row blocks, and if the row block is in E, then |
| 172 | // multiply by all the cells except the first one which is of type |
| 173 | // E. If the row block is not in E (i.e its in the bottom |
| 174 | // num_row_blocks - num_row_blocks_e row blocks), then all the cells |
| 175 | // are of type F and multiply by them all. |
| 176 | for (int r = 0; r < bs->rows.size(); ++r) { |
| 177 | const int row_block_pos = bs->rows[r].block.position; |
| 178 | const int row_block_size = bs->rows[r].block.size; |
| 179 | ConstVectorRef xref(x + row_block_pos, row_block_size); |
| 180 | const vector<Cell>& cells = bs->rows[r].cells; |
| 181 | for (int c = (r < num_row_blocks_e_) ? 1 : 0; c < cells.size(); ++c) { |
| 182 | const double* row_values = matrix_.RowBlockValues(r); |
| 183 | const int col_block_id = cells[c].block_id; |
| 184 | const int col_block_pos = bs->cols[col_block_id].position; |
| 185 | const int col_block_size = bs->cols[col_block_id].size; |
| 186 | |
| 187 | VectorRef yref(y + col_block_pos - num_cols_e(), col_block_size); |
| 188 | ConstMatrixRef m(row_values + cells[c].position, |
| 189 | row_block_size, |
| 190 | col_block_size); |
| 191 | yref += m.transpose().lazyProduct(xref); |
| 192 | } |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | // Given a range of columns blocks of a matrix m, compute the block |
| 197 | // structure of the block diagonal of the matrix m(:, |
| 198 | // start_col_block:end_col_block)'m(:, start_col_block:end_col_block) |
| 199 | // and return a BlockSparseMatrix with the this block structure. The |
| 200 | // caller owns the result. |
| 201 | BlockSparseMatrix* PartitionedMatrixView::CreateBlockDiagonalMatrixLayout( |
| 202 | int start_col_block, int end_col_block) const { |
| 203 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 204 | CompressedRowBlockStructure* block_diagonal_structure = |
| 205 | new CompressedRowBlockStructure; |
| 206 | |
| 207 | int block_position = 0; |
| 208 | int diagonal_cell_position = 0; |
| 209 | |
| 210 | // Iterate over the column blocks, creating a new diagonal block for |
| 211 | // each column block. |
| 212 | for (int c = start_col_block; c < end_col_block; ++c) { |
| 213 | const Block& block = bs->cols[c]; |
| 214 | block_diagonal_structure->cols.push_back(Block()); |
| 215 | Block& diagonal_block = block_diagonal_structure->cols.back(); |
| 216 | diagonal_block.size = block.size; |
| 217 | diagonal_block.position = block_position; |
| 218 | |
| 219 | block_diagonal_structure->rows.push_back(CompressedRow()); |
| 220 | CompressedRow& row = block_diagonal_structure->rows.back(); |
| 221 | row.block = diagonal_block; |
| 222 | |
| 223 | row.cells.push_back(Cell()); |
| 224 | Cell& cell = row.cells.back(); |
| 225 | cell.block_id = c - start_col_block; |
| 226 | cell.position = diagonal_cell_position; |
| 227 | |
| 228 | block_position += block.size; |
| 229 | diagonal_cell_position += block.size * block.size; |
| 230 | } |
| 231 | |
| 232 | // Build a BlockSparseMatrix with the just computed block |
| 233 | // structure. |
| 234 | return new BlockSparseMatrix(block_diagonal_structure); |
| 235 | } |
| 236 | |
| 237 | BlockSparseMatrix* PartitionedMatrixView::CreateBlockDiagonalEtE() const { |
| 238 | BlockSparseMatrix* block_diagonal = |
| 239 | CreateBlockDiagonalMatrixLayout(0, num_col_blocks_e_); |
| 240 | UpdateBlockDiagonalEtE(block_diagonal); |
| 241 | return block_diagonal; |
| 242 | } |
| 243 | |
| 244 | BlockSparseMatrix* PartitionedMatrixView::CreateBlockDiagonalFtF() const { |
| 245 | BlockSparseMatrix* block_diagonal = |
| 246 | CreateBlockDiagonalMatrixLayout( |
| 247 | num_col_blocks_e_, num_col_blocks_e_ + num_col_blocks_f_); |
| 248 | UpdateBlockDiagonalFtF(block_diagonal); |
| 249 | return block_diagonal; |
| 250 | } |
| 251 | |
| 252 | // Similar to the code in RightMultiplyE, except instead of the matrix |
| 253 | // vector multiply its an outer product. |
| 254 | // |
| 255 | // block_diagonal = block_diagonal(E'E) |
| 256 | void PartitionedMatrixView::UpdateBlockDiagonalEtE( |
| 257 | BlockSparseMatrix* block_diagonal) const { |
| 258 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 259 | const CompressedRowBlockStructure* block_diagonal_structure = |
| 260 | block_diagonal->block_structure(); |
| 261 | |
| 262 | block_diagonal->SetZero(); |
| 263 | |
| 264 | for (int r = 0; r < num_row_blocks_e_ ; ++r) { |
| 265 | const double* row_values = matrix_.RowBlockValues(r); |
| 266 | const Cell& cell = bs->rows[r].cells[0]; |
| 267 | const int row_block_size = bs->rows[r].block.size; |
| 268 | const int block_id = cell.block_id; |
| 269 | const int col_block_size = bs->cols[block_id].size; |
| 270 | ConstMatrixRef m(row_values + cell.position, |
| 271 | row_block_size, |
| 272 | col_block_size); |
| 273 | |
| 274 | const int cell_position = |
| 275 | block_diagonal_structure->rows[block_id].cells[0].position; |
| 276 | |
| 277 | MatrixRef(block_diagonal->mutable_values() + cell_position, |
| 278 | col_block_size, col_block_size).noalias() += m.transpose() * m; |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | // Similar to the code in RightMultiplyF, except instead of the matrix |
| 283 | // vector multiply its an outer product. |
| 284 | // |
| 285 | // block_diagonal = block_diagonal(F'F) |
Keir Mierle | db4ec93 | 2012-05-05 20:33:16 -0700 | [diff] [blame] | 286 | // |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 287 | void PartitionedMatrixView::UpdateBlockDiagonalFtF( |
| 288 | BlockSparseMatrix* block_diagonal) const { |
| 289 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 290 | const CompressedRowBlockStructure* block_diagonal_structure = |
| 291 | block_diagonal->block_structure(); |
| 292 | |
| 293 | block_diagonal->SetZero(); |
| 294 | for (int r = 0; r < bs->rows.size(); ++r) { |
| 295 | const int row_block_size = bs->rows[r].block.size; |
| 296 | const vector<Cell>& cells = bs->rows[r].cells; |
| 297 | const double* row_values = matrix_.RowBlockValues(r); |
| 298 | for (int c = (r < num_row_blocks_e_) ? 1 : 0; c < cells.size(); ++c) { |
| 299 | const int col_block_id = cells[c].block_id; |
| 300 | const int col_block_size = bs->cols[col_block_id].size; |
| 301 | ConstMatrixRef m(row_values + cells[c].position, |
| 302 | row_block_size, |
| 303 | col_block_size); |
| 304 | const int diagonal_block_id = col_block_id - num_col_blocks_e_; |
| 305 | const int cell_position = |
| 306 | block_diagonal_structure->rows[diagonal_block_id].cells[0].position; |
| 307 | |
| 308 | MatrixRef(block_diagonal->mutable_values() + cell_position, |
| 309 | col_block_size, col_block_size).noalias() += m.transpose() * m; |
| 310 | } |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | } // namespace internal |
| 315 | } // namespace ceres |