Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 31 | #include "ceres/sparse_normal_cholesky_solver.h" |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include <cstring> |
| 35 | #include <ctime> |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 36 | |
| 37 | #ifndef CERES_NO_CXSPARSE |
| 38 | #include "cs.h" |
| 39 | #endif |
| 40 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 41 | #include "ceres/compressed_row_sparse_matrix.h" |
| 42 | #include "ceres/linear_solver.h" |
| 43 | #include "ceres/suitesparse.h" |
| 44 | #include "ceres/triplet_sparse_matrix.h" |
| 45 | #include "ceres/internal/eigen.h" |
| 46 | #include "ceres/internal/scoped_ptr.h" |
| 47 | #include "ceres/types.h" |
| 48 | |
| 49 | namespace ceres { |
| 50 | namespace internal { |
| 51 | |
| 52 | SparseNormalCholeskySolver::SparseNormalCholeskySolver( |
| 53 | const LinearSolver::Options& options) |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 54 | : options_(options) { |
| 55 | #ifndef CERES_NO_SUITESPARSE |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 56 | factor_ = NULL; |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 57 | #endif |
| 58 | } |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 59 | |
| 60 | SparseNormalCholeskySolver::~SparseNormalCholeskySolver() { |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 61 | #ifndef CERES_NO_SUITESPARSE |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 62 | if (factor_ != NULL) { |
| 63 | ss_.Free(factor_); |
| 64 | factor_ = NULL; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 65 | } |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 66 | #endif |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 67 | } |
| 68 | |
| 69 | LinearSolver::Summary SparseNormalCholeskySolver::SolveImpl( |
| 70 | CompressedRowSparseMatrix* A, |
| 71 | const double* b, |
| 72 | const LinearSolver::PerSolveOptions& per_solve_options, |
| 73 | double * x) { |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 74 | switch (options_.sparse_linear_algebra_library) { |
| 75 | case SUITE_SPARSE: |
| 76 | return SolveImplUsingSuiteSparse(A, b, per_solve_options, x); |
| 77 | case CX_SPARSE: |
| 78 | return SolveImplUsingCXSparse(A, b, per_solve_options, x); |
| 79 | default: |
| 80 | LOG(FATAL) << "Unknown sparse linear algebra library : " |
| 81 | << options_.sparse_linear_algebra_library; |
| 82 | } |
| 83 | |
| 84 | LOG(FATAL) << "Unknown sparse linear algebra library : " |
| 85 | << options_.sparse_linear_algebra_library; |
| 86 | return LinearSolver::Summary(); |
| 87 | } |
| 88 | |
| 89 | #ifndef CERES_NO_CXSPARSE |
| 90 | LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse( |
| 91 | CompressedRowSparseMatrix* A, |
| 92 | const double* b, |
| 93 | const LinearSolver::PerSolveOptions& per_solve_options, |
| 94 | double * x) { |
| 95 | LinearSolver::Summary summary; |
| 96 | summary.num_iterations = 1; |
| 97 | const int num_cols = A->num_cols(); |
| 98 | Vector Atb = Vector::Zero(num_cols); |
| 99 | A->LeftMultiply(b, Atb.data()); |
| 100 | |
| 101 | if (per_solve_options.D != NULL) { |
| 102 | // Temporarily append a diagonal block to the A matrix, but undo |
| 103 | // it before returning the matrix to the user. |
| 104 | CompressedRowSparseMatrix D(per_solve_options.D, num_cols); |
| 105 | A->AppendRows(D); |
| 106 | } |
| 107 | |
| 108 | VectorRef(x, num_cols).setZero(); |
| 109 | |
| 110 | // Wrap the augmented Jacobian in a compressed sparse column matrix. |
| 111 | cs_di At; |
| 112 | At.m = A->num_cols(); |
| 113 | At.n = A->num_rows(); |
| 114 | At.nz = -1; |
| 115 | At.nzmax = A->num_nonzeros(); |
| 116 | At.p = A->mutable_rows(); |
| 117 | At.i = A->mutable_cols(); |
| 118 | At.x = A->mutable_values(); |
| 119 | |
| 120 | // Compute the normal equations. J'J delta = J'f and solve them |
| 121 | // using a sparse Cholesky factorization. Notice that when compared |
| 122 | // to SuiteSparse we have to explicitly compute the transpose of Jt, |
| 123 | // and then the normal equations before they can be |
| 124 | // factorized. CHOLMOD/SuiteSparse on the other hand can just work |
| 125 | // off of Jt to compute the Cholesky factorization of the normal |
| 126 | // equations. |
| 127 | cs_di* A2 = cs_transpose(&At, 1); |
| 128 | cs_di* AtA = cs_multiply(&At,A2); |
| 129 | |
| 130 | cs_free(A2); |
| 131 | if (per_solve_options.D != NULL) { |
| 132 | A->DeleteRows(num_cols); |
| 133 | } |
| 134 | |
| 135 | // This recomputes the symbolic factorization every time it is |
| 136 | // invoked. It will perhaps be worth it to cache the symbolic |
| 137 | // factorization the way we do for SuiteSparse. |
| 138 | if (cs_cholsol(1, AtA, Atb.data())) { |
| 139 | VectorRef(x, Atb.rows()) = Atb; |
| 140 | summary.termination_type = TOLERANCE; |
| 141 | } |
| 142 | |
| 143 | cs_free(AtA); |
| 144 | return summary; |
| 145 | } |
| 146 | #else |
| 147 | LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse( |
| 148 | CompressedRowSparseMatrix* A, |
| 149 | const double* b, |
| 150 | const LinearSolver::PerSolveOptions& per_solve_options, |
| 151 | double * x) { |
| 152 | LOG(FATAL) << "No CXSparse support in Ceres."; |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame^] | 153 | |
| 154 | // Unreachable but MSVC does not know this. |
| 155 | return LinearSolver::Summary(); |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 156 | } |
| 157 | #endif |
| 158 | |
| 159 | #ifndef CERES_NO_SUITESPARSE |
| 160 | LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse( |
| 161 | CompressedRowSparseMatrix* A, |
| 162 | const double* b, |
| 163 | const LinearSolver::PerSolveOptions& per_solve_options, |
| 164 | double * x) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 165 | const time_t start_time = time(NULL); |
| 166 | const int num_cols = A->num_cols(); |
| 167 | |
| 168 | LinearSolver::Summary summary; |
| 169 | Vector Atb = Vector::Zero(num_cols); |
| 170 | A->LeftMultiply(b, Atb.data()); |
| 171 | |
| 172 | if (per_solve_options.D != NULL) { |
| 173 | // Temporarily append a diagonal block to the A matrix, but undo it before |
| 174 | // returning the matrix to the user. |
| 175 | CompressedRowSparseMatrix D(per_solve_options.D, num_cols); |
| 176 | A->AppendRows(D); |
| 177 | } |
| 178 | |
| 179 | VectorRef(x, num_cols).setZero(); |
| 180 | |
| 181 | scoped_ptr<cholmod_sparse> lhs(ss_.CreateSparseMatrixTransposeView(A)); |
| 182 | CHECK_NOTNULL(lhs.get()); |
| 183 | |
| 184 | cholmod_dense* rhs = ss_.CreateDenseVector(Atb.data(), num_cols, num_cols); |
| 185 | const time_t init_time = time(NULL); |
| 186 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 187 | if (factor_ == NULL) { |
| 188 | if (options_.use_block_amd) { |
| 189 | factor_ = ss_.BlockAnalyzeCholesky(lhs.get(), |
| 190 | A->col_blocks(), |
| 191 | A->row_blocks()); |
| 192 | } else { |
| 193 | factor_ = ss_.AnalyzeCholesky(lhs.get()); |
| 194 | } |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 195 | |
Sameer Agarwal | cb83b28 | 2012-06-06 22:26:09 -0700 | [diff] [blame] | 196 | if (VLOG_IS_ON(2)) { |
| 197 | cholmod_print_common("Symbolic Analysis", ss_.mutable_cc()); |
| 198 | } |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 199 | } |
| 200 | |
| 201 | CHECK_NOTNULL(factor_); |
| 202 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 203 | const time_t symbolic_time = time(NULL); |
| 204 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 205 | cholmod_dense* sol = ss_.SolveCholesky(lhs.get(), factor_, rhs); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 206 | const time_t solve_time = time(NULL); |
| 207 | |
| 208 | ss_.Free(rhs); |
| 209 | rhs = NULL; |
| 210 | |
| 211 | if (per_solve_options.D != NULL) { |
| 212 | A->DeleteRows(num_cols); |
| 213 | } |
| 214 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 215 | summary.num_iterations = 1; |
| 216 | if (sol != NULL) { |
| 217 | memcpy(x, sol->x, num_cols * sizeof(*x)); |
| 218 | |
| 219 | ss_.Free(sol); |
| 220 | sol = NULL; |
| 221 | summary.termination_type = TOLERANCE; |
| 222 | } |
| 223 | |
| 224 | const time_t cleanup_time = time(NULL); |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 225 | VLOG(2) << "time (sec) total: " << (cleanup_time - start_time) |
| 226 | << " init: " << (init_time - start_time) |
| 227 | << " symbolic: " << (symbolic_time - init_time) |
| 228 | << " solve: " << (solve_time - symbolic_time) |
| 229 | << " cleanup: " << (cleanup_time - solve_time); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 230 | return summary; |
| 231 | } |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 232 | #else |
| 233 | LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse( |
| 234 | CompressedRowSparseMatrix* A, |
| 235 | const double* b, |
| 236 | const LinearSolver::PerSolveOptions& per_solve_options, |
| 237 | double * x) { |
| 238 | LOG(FATAL) << "No SuiteSparse support in Ceres."; |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame^] | 239 | |
| 240 | // Unreachable but MSVC does not know this. |
| 241 | return LinearSolver::Summary(); |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 242 | } |
| 243 | #endif |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 244 | |
| 245 | } // namespace internal |
| 246 | } // namespace ceres |