blob: 8ded823e5bdde9982db742524978fe58a1adcbfb [file] [log] [blame]
Sameer Agarwal9883fc32012-11-30 12:32:43 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
Sameer Agarwal8140f0f2013-03-12 09:45:08 -070031#ifndef CERES_NO_LINE_SEARCH_MINIMIZER
32
Sameer Agarwal9883fc32012-11-30 12:32:43 -080033#include "ceres/line_search_direction.h"
34#include "ceres/line_search_minimizer.h"
35#include "ceres/low_rank_inverse_hessian.h"
36#include "ceres/internal/eigen.h"
37#include "glog/logging.h"
38
39namespace ceres {
40namespace internal {
41
42class SteepestDescent : public LineSearchDirection {
43 public:
44 virtual ~SteepestDescent() {}
45 bool NextDirection(const LineSearchMinimizer::State& previous,
46 const LineSearchMinimizer::State& current,
47 Vector* search_direction) {
48 *search_direction = -current.gradient;
49 return true;
50 }
51};
52
53class NonlinearConjugateGradient : public LineSearchDirection {
54 public:
55 NonlinearConjugateGradient(const NonlinearConjugateGradientType type,
56 const double function_tolerance)
57 : type_(type),
58 function_tolerance_(function_tolerance) {
59 }
60
61 bool NextDirection(const LineSearchMinimizer::State& previous,
62 const LineSearchMinimizer::State& current,
63 Vector* search_direction) {
64 double beta = 0.0;
65 Vector gradient_change;
66 switch (type_) {
67 case FLETCHER_REEVES:
68 beta = current.gradient_squared_norm / previous.gradient_squared_norm;
69 break;
70 case POLAK_RIBIRERE:
71 gradient_change = current.gradient - previous.gradient;
72 beta = (current.gradient.dot(gradient_change) /
73 previous.gradient_squared_norm);
74 break;
75 case HESTENES_STIEFEL:
76 gradient_change = current.gradient - previous.gradient;
77 beta = (current.gradient.dot(gradient_change) /
78 previous.search_direction.dot(gradient_change));
79 break;
80 default:
81 LOG(FATAL) << "Unknown nonlinear conjugate gradient type: " << type_;
82 }
83
84 *search_direction = -current.gradient + beta * previous.search_direction;
Sameer Agarwal509f68c2013-02-20 01:39:03 -080085 const double directional_derivative =
Sameer Agarwal931c3092013-02-25 09:46:21 -080086 current.gradient.dot(*search_direction);
Sameer Agarwal9883fc32012-11-30 12:32:43 -080087 if (directional_derivative > -function_tolerance_) {
88 LOG(WARNING) << "Restarting non-linear conjugate gradients: "
89 << directional_derivative;
90 *search_direction = -current.gradient;
91 };
92
93 return true;
94 }
95
96 private:
97 const NonlinearConjugateGradientType type_;
98 const double function_tolerance_;
99};
100
101class LBFGS : public LineSearchDirection {
102 public:
Alex Stewart9aa0e3c2013-07-05 20:22:37 +0100103 LBFGS(const int num_parameters,
104 const int max_lbfgs_rank,
105 const bool use_approximate_eigenvalue_bfgs_scaling)
106 : low_rank_inverse_hessian_(num_parameters,
107 max_lbfgs_rank,
108 use_approximate_eigenvalue_bfgs_scaling),
109 is_positive_definite_(true) {}
Sameer Agarwal9883fc32012-11-30 12:32:43 -0800110
111 virtual ~LBFGS() {}
112
113 bool NextDirection(const LineSearchMinimizer::State& previous,
114 const LineSearchMinimizer::State& current,
115 Vector* search_direction) {
Alex Stewart9aa0e3c2013-07-05 20:22:37 +0100116 CHECK(is_positive_definite_)
117 << "Ceres bug: NextDirection() called on L-BFGS after inverse Hessian "
118 << "approximation has become indefinite, please contact the "
119 << "developers!";
120
Sameer Agarwal9883fc32012-11-30 12:32:43 -0800121 low_rank_inverse_hessian_.Update(
122 previous.search_direction * previous.step_size,
123 current.gradient - previous.gradient);
124 search_direction->setZero();
125 low_rank_inverse_hessian_.RightMultiply(current.gradient.data(),
126 search_direction->data());
127 *search_direction *= -1.0;
Alex Stewart9aa0e3c2013-07-05 20:22:37 +0100128
129 if (search_direction->dot(current.gradient) >= 0.0) {
130 LOG(WARNING) << "Numerical failure in L-BFGS update: inverse Hessian "
131 << "approximation is not positive definite, and thus "
132 << "initial gradient for search direction is positive: "
133 << search_direction->dot(current.gradient);
134 is_positive_definite_ = false;
135 return false;
136 }
137
Sameer Agarwal9883fc32012-11-30 12:32:43 -0800138 return true;
139 }
140
141 private:
142 LowRankInverseHessian low_rank_inverse_hessian_;
Alex Stewart9aa0e3c2013-07-05 20:22:37 +0100143 bool is_positive_definite_;
144};
145
146class BFGS : public LineSearchDirection {
147 public:
148 BFGS(const int num_parameters,
149 const bool use_approximate_eigenvalue_scaling)
150 : num_parameters_(num_parameters),
151 use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling),
152 initialized_(false),
153 is_positive_definite_(true) {
154 LOG_IF(WARNING, num_parameters_ >= 1e3)
155 << "BFGS line search being created with: " << num_parameters_
156 << " parameters, this will allocate a dense approximate inverse Hessian"
157 << " of size: " << num_parameters_ << " x " << num_parameters_
158 << ", consider using the L-BFGS memory-efficient line search direction "
159 << "instead.";
160 // Construct inverse_hessian_ after logging warning about size s.t. if the
161 // allocation crashes us, the log will highlight what the issue likely was.
162 inverse_hessian_ = Matrix::Identity(num_parameters, num_parameters);
163 }
164
165 virtual ~BFGS() {}
166
167 bool NextDirection(const LineSearchMinimizer::State& previous,
168 const LineSearchMinimizer::State& current,
169 Vector* search_direction) {
170 CHECK(is_positive_definite_)
171 << "Ceres bug: NextDirection() called on BFGS after inverse Hessian "
172 << "approximation has become indefinite, please contact the "
173 << "developers!";
174
175 const Vector delta_x = previous.search_direction * previous.step_size;
176 const Vector delta_gradient = current.gradient - previous.gradient;
177 const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient);
178
179 if (delta_x_dot_delta_gradient <= 1e-10) {
180 VLOG(2) << "Skipping BFGS Update, delta_x_dot_delta_gradient too "
181 << "small: " << delta_x_dot_delta_gradient;
182 } else {
183 // Update dense inverse Hessian approximation.
184
185 if (!initialized_ && use_approximate_eigenvalue_scaling_) {
186 // Rescale the initial inverse Hessian approximation (H_0) to be
187 // iteratively updated so that it is of similar 'size' to the true
188 // inverse Hessian at the start point. As shown in [1]:
189 //
190 // \gamma = (delta_gradient_{0}' * delta_x_{0}) /
191 // (delta_gradient_{0}' * delta_gradient_{0})
192 //
193 // Satisfies:
194 //
195 // (1 / \lambda_m) <= \gamma <= (1 / \lambda_1)
196 //
197 // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues
198 // of the true initial Hessian (not the inverse) respectively. Thus,
199 // \gamma is an approximate eigenvalue of the true inverse Hessian, and
200 // choosing: H_0 = I * \gamma will yield a starting point that has a
201 // similar scale to the true inverse Hessian. This technique is widely
202 // reported to often improve convergence, however this is not
203 // universally true, particularly if there are errors in the initial
204 // gradients, or if there are significant differences in the sensitivity
205 // of the problem to the parameters (i.e. the range of the magnitudes of
206 // the components of the gradient is large).
207 //
208 // The original origin of this rescaling trick is somewhat unclear, the
209 // earliest reference appears to be Oren [1], however it is widely
210 // discussed without specific attributation in various texts including
211 // [2] (p143).
212 //
213 // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms
214 // Part II: Implementation and experiments, Management Science,
215 // 20(5), 863-874, 1974.
216 // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999.
217 inverse_hessian_ *=
218 delta_x_dot_delta_gradient / delta_gradient.dot(delta_gradient);
219 }
220 initialized_ = true;
221
222 // Efficient O(num_parameters^2) BFGS update [2].
223 //
224 // Starting from dense BFGS update detailed in Nocedal [2] p140/177 and
225 // using: y_k = delta_gradient, s_k = delta_x:
226 //
227 // \rho_k = 1.0 / (s_k' * y_k)
228 // V_k = I - \rho_k * y_k * s_k'
229 // H_k = (V_k' * H_{k-1} * V_k) + (\rho_k * s_k * s_k')
230 //
231 // This update involves matrix, matrix products which naively O(N^3),
232 // however we can exploit our knowledge that H_k is positive definite
233 // and thus by defn. symmetric to reduce the cost of the update:
234 //
235 // Expanding the update above yields:
236 //
237 // H_k = H_{k-1} +
238 // \rho_k * ( (1.0 + \rho_k * y_k' * H_k * y_k) * s_k * s_k' -
239 // (s_k * y_k' * H_k + H_k * y_k * s_k') )
240 //
241 // Using: A = (s_k * y_k' * H_k), and the knowledge that H_k = H_k', the
242 // last term simplifies to (A + A'). Note that although A is not symmetric
243 // (A + A') is symmetric. For ease of construction we also define
244 // B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k', which is by defn
245 // symmetric due to construction from: s_k * s_k'.
246 //
247 // Now we can write the BFGS update as:
248 //
249 // H_k = H_{k-1} + \rho_k * (B - (A + A'))
250
251 // For efficiency, as H_k is by defn. symmetric, we will only maintain the
252 // *lower* triangle of H_k (and all intermediary terms).
253
254 const double rho_k = 1.0 / delta_x_dot_delta_gradient;
255
256 // Calculate: A = s_k * y_k' * H_k
257 Matrix A = delta_x * (delta_gradient.transpose() *
258 inverse_hessian_.selfadjointView<Eigen::Lower>());
259
260 // Calculate scalar: (1 + \rho_k * y_k' * H_k * y_k)
261 const double delta_x_times_delta_x_transpose_scale_factor =
262 (1.0 + (rho_k * delta_gradient.transpose() *
263 inverse_hessian_.selfadjointView<Eigen::Lower>() *
264 delta_gradient));
265 // Calculate: B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k'
266 Matrix B = Matrix::Zero(num_parameters_, num_parameters_);
267 B.selfadjointView<Eigen::Lower>().
268 rankUpdate(delta_x, delta_x_times_delta_x_transpose_scale_factor);
269
270 // Finally, update inverse Hessian approximation according to:
271 // H_k = H_{k-1} + \rho_k * (B - (A + A')). Note that (A + A') is
272 // symmetric, even though A is not.
273 inverse_hessian_.triangularView<Eigen::Lower>() +=
274 rho_k * (B - A - A.transpose());
275 }
276
277 *search_direction =
278 inverse_hessian_.selfadjointView<Eigen::Lower>() *
279 (-1.0 * current.gradient);
280
281 if (search_direction->dot(current.gradient) >= 0.0) {
282 LOG(WARNING) << "Numerical failure in BFGS update: inverse Hessian "
283 << "approximation is not positive definite, and thus "
284 << "initial gradient for search direction is positive: "
285 << search_direction->dot(current.gradient);
286 is_positive_definite_ = false;
287 return false;
288 }
289
290 return true;
291 }
292
293 private:
294 const int num_parameters_;
295 const bool use_approximate_eigenvalue_scaling_;
296 Matrix inverse_hessian_;
297 bool initialized_;
298 bool is_positive_definite_;
Sameer Agarwal9883fc32012-11-30 12:32:43 -0800299};
300
301LineSearchDirection*
Sameer Agarwal509f68c2013-02-20 01:39:03 -0800302LineSearchDirection::Create(const LineSearchDirection::Options& options) {
Sameer Agarwal9883fc32012-11-30 12:32:43 -0800303 if (options.type == STEEPEST_DESCENT) {
304 return new SteepestDescent;
305 }
306
307 if (options.type == NONLINEAR_CONJUGATE_GRADIENT) {
308 return new NonlinearConjugateGradient(
309 options.nonlinear_conjugate_gradient_type,
310 options.function_tolerance);
311 }
312
313 if (options.type == ceres::LBFGS) {
Alex Stewart9aa0e3c2013-07-05 20:22:37 +0100314 return new ceres::internal::LBFGS(
315 options.num_parameters,
316 options.max_lbfgs_rank,
317 options.use_approximate_eigenvalue_bfgs_scaling);
318 }
319
320 if (options.type == ceres::BFGS) {
321 return new ceres::internal::BFGS(
322 options.num_parameters,
323 options.use_approximate_eigenvalue_bfgs_scaling);
Sameer Agarwal9883fc32012-11-30 12:32:43 -0800324 }
325
326 LOG(ERROR) << "Unknown line search direction type: " << options.type;
327 return NULL;
328}
329
330} // namespace internal
331} // namespace ceres
Sameer Agarwal8140f0f2013-03-12 09:45:08 -0700332
333#endif // CERES_NO_LINE_SEARCH_MINIMIZER