Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // |
| 31 | // Based on the templated version in public/numeric_diff_cost_function.h. |
| 32 | |
| 33 | #include "ceres/runtime_numeric_diff_cost_function.h" |
| 34 | |
| 35 | #include <algorithm> |
| 36 | #include <numeric> |
| 37 | #include <vector> |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 38 | #include "Eigen/Dense" |
| 39 | #include "ceres/cost_function.h" |
| 40 | #include "ceres/internal/scoped_ptr.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 41 | #include "glog/logging.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 42 | |
| 43 | namespace ceres { |
| 44 | namespace internal { |
| 45 | namespace { |
| 46 | |
| 47 | bool EvaluateJacobianForParameterBlock(const CostFunction* function, |
| 48 | int parameter_block_size, |
| 49 | int parameter_block, |
| 50 | RuntimeNumericDiffMethod method, |
| 51 | double relative_step_size, |
| 52 | double const* residuals_at_eval_point, |
| 53 | double** parameters, |
| 54 | double** jacobians) { |
| 55 | using Eigen::Map; |
| 56 | using Eigen::Matrix; |
| 57 | using Eigen::Dynamic; |
| 58 | using Eigen::RowMajor; |
| 59 | |
| 60 | typedef Matrix<double, Dynamic, 1> ResidualVector; |
| 61 | typedef Matrix<double, Dynamic, 1> ParameterVector; |
| 62 | typedef Matrix<double, Dynamic, Dynamic, RowMajor> JacobianMatrix; |
| 63 | |
| 64 | int num_residuals = function->num_residuals(); |
| 65 | |
| 66 | Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block], |
| 67 | num_residuals, |
| 68 | parameter_block_size); |
| 69 | |
| 70 | // Mutate one element at a time and then restore. |
| 71 | Map<ParameterVector> x_plus_delta(parameters[parameter_block], |
| 72 | parameter_block_size); |
| 73 | ParameterVector x(x_plus_delta); |
| 74 | ParameterVector step_size = x.array().abs() * relative_step_size; |
| 75 | |
| 76 | // To handle cases where a paremeter is exactly zero, instead use the mean |
| 77 | // step_size for the other dimensions. |
| 78 | double fallback_step_size = step_size.sum() / step_size.rows(); |
| 79 | if (fallback_step_size == 0.0) { |
| 80 | // If all the parameters are zero, there's no good answer. Use the given |
| 81 | // relative step_size as absolute step_size and hope for the best. |
| 82 | fallback_step_size = relative_step_size; |
| 83 | } |
| 84 | |
| 85 | // For each parameter in the parameter block, use finite differences to |
| 86 | // compute the derivative for that parameter. |
| 87 | for (int j = 0; j < parameter_block_size; ++j) { |
| 88 | if (step_size(j) == 0.0) { |
| 89 | // The parameter is exactly zero, so compromise and use the mean step_size |
| 90 | // from the other parameters. This can break in many cases, but it's hard |
| 91 | // to pick a good number without problem specific knowledge. |
| 92 | step_size(j) = fallback_step_size; |
| 93 | } |
| 94 | x_plus_delta(j) = x(j) + step_size(j); |
| 95 | |
| 96 | ResidualVector residuals(num_residuals); |
| 97 | if (!function->Evaluate(parameters, &residuals[0], NULL)) { |
| 98 | // Something went wrong; bail. |
| 99 | return false; |
| 100 | } |
| 101 | |
| 102 | // Compute this column of the jacobian in 3 steps: |
| 103 | // 1. Store residuals for the forward part. |
| 104 | // 2. Subtract residuals for the backward (or 0) part. |
| 105 | // 3. Divide out the run. |
| 106 | parameter_jacobian.col(j) = residuals; |
| 107 | |
| 108 | double one_over_h = 1 / step_size(j); |
| 109 | if (method == CENTRAL) { |
| 110 | // Compute the function on the other side of x(j). |
| 111 | x_plus_delta(j) = x(j) - step_size(j); |
| 112 | |
| 113 | if (!function->Evaluate(parameters, &residuals[0], NULL)) { |
| 114 | // Something went wrong; bail. |
| 115 | return false; |
| 116 | } |
| 117 | parameter_jacobian.col(j) -= residuals; |
| 118 | one_over_h /= 2; |
| 119 | } else { |
| 120 | // Forward difference only; reuse existing residuals evaluation. |
| 121 | parameter_jacobian.col(j) -= |
| 122 | Map<const ResidualVector>(residuals_at_eval_point, num_residuals); |
| 123 | } |
| 124 | x_plus_delta(j) = x(j); // Restore x_plus_delta. |
| 125 | |
| 126 | // Divide out the run to get slope. |
| 127 | parameter_jacobian.col(j) *= one_over_h; |
| 128 | } |
| 129 | return true; |
| 130 | } |
| 131 | |
| 132 | class RuntimeNumericDiffCostFunction : public CostFunction { |
| 133 | public: |
| 134 | RuntimeNumericDiffCostFunction(const CostFunction* function, |
| 135 | RuntimeNumericDiffMethod method, |
| 136 | double relative_step_size) |
| 137 | : function_(function), |
| 138 | method_(method), |
| 139 | relative_step_size_(relative_step_size) { |
| 140 | *mutable_parameter_block_sizes() = function->parameter_block_sizes(); |
| 141 | set_num_residuals(function->num_residuals()); |
| 142 | } |
| 143 | |
| 144 | virtual ~RuntimeNumericDiffCostFunction() { } |
| 145 | |
| 146 | virtual bool Evaluate(double const* const* parameters, |
| 147 | double* residuals, |
| 148 | double** jacobians) const { |
| 149 | // Get the function value (residuals) at the the point to evaluate. |
| 150 | bool success = function_->Evaluate(parameters, residuals, NULL); |
| 151 | if (!success) { |
| 152 | // Something went wrong; ignore the jacobian. |
| 153 | return false; |
| 154 | } |
| 155 | if (!jacobians) { |
| 156 | // Nothing to do; just forward. |
| 157 | return true; |
| 158 | } |
| 159 | |
| 160 | const vector<int16>& block_sizes = function_->parameter_block_sizes(); |
| 161 | CHECK(!block_sizes.empty()); |
| 162 | |
| 163 | // Create local space for a copy of the parameters which will get mutated. |
| 164 | int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0); |
| 165 | vector<double> parameters_copy(parameters_size); |
| 166 | vector<double*> parameters_references_copy(block_sizes.size()); |
| 167 | parameters_references_copy[0] = ¶meters_copy[0]; |
| 168 | for (int block = 1; block < block_sizes.size(); ++block) { |
| 169 | parameters_references_copy[block] = parameters_references_copy[block - 1] |
| 170 | + block_sizes[block - 1]; |
| 171 | } |
| 172 | |
| 173 | // Copy the parameters into the local temp space. |
| 174 | for (int block = 0; block < block_sizes.size(); ++block) { |
| 175 | memcpy(parameters_references_copy[block], |
| 176 | parameters[block], |
| 177 | block_sizes[block] * sizeof(*parameters[block])); |
| 178 | } |
| 179 | |
| 180 | for (int block = 0; block < block_sizes.size(); ++block) { |
| 181 | if (!jacobians[block]) { |
| 182 | // No jacobian requested for this parameter / residual pair. |
| 183 | continue; |
| 184 | } |
| 185 | if (!EvaluateJacobianForParameterBlock(function_, |
| 186 | block_sizes[block], |
| 187 | block, |
| 188 | method_, |
| 189 | relative_step_size_, |
| 190 | residuals, |
| 191 | ¶meters_references_copy[0], |
| 192 | jacobians)) { |
| 193 | return false; |
| 194 | } |
| 195 | } |
| 196 | return true; |
| 197 | } |
| 198 | |
| 199 | private: |
| 200 | const CostFunction* function_; |
| 201 | RuntimeNumericDiffMethod method_; |
| 202 | double relative_step_size_; |
| 203 | }; |
| 204 | |
| 205 | } // namespace |
| 206 | |
| 207 | CostFunction* CreateRuntimeNumericDiffCostFunction( |
| 208 | const CostFunction* cost_function, |
| 209 | RuntimeNumericDiffMethod method, |
| 210 | double relative_step_size) { |
| 211 | return new RuntimeNumericDiffCostFunction(cost_function, |
| 212 | method, |
| 213 | relative_step_size); |
| 214 | } |
| 215 | |
| 216 | } // namespace internal |
| 217 | } // namespace ceres |