Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/compressed_row_sparse_matrix.h" |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include <vector> |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 35 | #include "ceres/crs_matrix.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 36 | #include "ceres/internal/port.h" |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 37 | #include "ceres/matrix_proto.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 38 | |
| 39 | namespace ceres { |
| 40 | namespace internal { |
| 41 | namespace { |
| 42 | |
| 43 | // Helper functor used by the constructor for reordering the contents |
Sameer Agarwal | a9d8ef8 | 2012-05-14 02:28:05 -0700 | [diff] [blame] | 44 | // of a TripletSparseMatrix. This comparator assumes thay there are no |
| 45 | // duplicates in the pair of arrays rows and cols, i.e., there is no |
| 46 | // indices i and j (not equal to each other) s.t. |
| 47 | // |
| 48 | // rows[i] == rows[j] && cols[i] == cols[j] |
| 49 | // |
| 50 | // If this is the case, this functor will not be a StrictWeakOrdering. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 51 | struct RowColLessThan { |
| 52 | RowColLessThan(const int* rows, const int* cols) |
| 53 | : rows(rows), cols(cols) { |
| 54 | } |
| 55 | |
| 56 | bool operator()(const int x, const int y) const { |
| 57 | if (rows[x] == rows[y]) { |
| 58 | return (cols[x] < cols[y]); |
| 59 | } |
| 60 | return (rows[x] < rows[y]); |
| 61 | } |
| 62 | |
| 63 | const int* rows; |
| 64 | const int* cols; |
| 65 | }; |
| 66 | |
| 67 | } // namespace |
| 68 | |
| 69 | // This constructor gives you a semi-initialized CompressedRowSparseMatrix. |
| 70 | CompressedRowSparseMatrix::CompressedRowSparseMatrix(int num_rows, |
| 71 | int num_cols, |
| 72 | int max_num_nonzeros) { |
| 73 | num_rows_ = num_rows; |
| 74 | num_cols_ = num_cols; |
| 75 | max_num_nonzeros_ = max_num_nonzeros; |
| 76 | |
| 77 | VLOG(1) << "# of rows: " << num_rows_ << " # of columns: " << num_cols_ |
| 78 | << " max_num_nonzeros: " << max_num_nonzeros_ |
| 79 | << ". Allocating " << (num_rows_ + 1) * sizeof(int) + // NOLINT |
| 80 | max_num_nonzeros_ * sizeof(int) + // NOLINT |
| 81 | max_num_nonzeros_ * sizeof(double); // NOLINT |
| 82 | |
| 83 | rows_.reset(new int[num_rows_ + 1]); |
| 84 | cols_.reset(new int[max_num_nonzeros_]); |
| 85 | values_.reset(new double[max_num_nonzeros_]); |
| 86 | |
| 87 | fill(rows_.get(), rows_.get() + num_rows_ + 1, 0); |
| 88 | fill(cols_.get(), cols_.get() + max_num_nonzeros_, 0); |
| 89 | fill(values_.get(), values_.get() + max_num_nonzeros_, 0); |
| 90 | } |
| 91 | |
| 92 | CompressedRowSparseMatrix::CompressedRowSparseMatrix( |
| 93 | const TripletSparseMatrix& m) { |
| 94 | num_rows_ = m.num_rows(); |
| 95 | num_cols_ = m.num_cols(); |
| 96 | max_num_nonzeros_ = m.max_num_nonzeros(); |
| 97 | |
| 98 | // index is the list of indices into the TripletSparseMatrix m. |
| 99 | vector<int> index(m.num_nonzeros(), 0); |
| 100 | for (int i = 0; i < m.num_nonzeros(); ++i) { |
| 101 | index[i] = i; |
| 102 | } |
| 103 | |
| 104 | // Sort index such that the entries of m are ordered by row and ties |
| 105 | // are broken by column. |
| 106 | sort(index.begin(), index.end(), RowColLessThan(m.rows(), m.cols())); |
| 107 | |
| 108 | VLOG(1) << "# of rows: " << num_rows_ << " # of columns: " << num_cols_ |
| 109 | << " max_num_nonzeros: " << max_num_nonzeros_ |
| 110 | << ". Allocating " << (num_rows_ + 1) * sizeof(int) + // NOLINT |
| 111 | max_num_nonzeros_ * sizeof(int) + // NOLINT |
| 112 | max_num_nonzeros_ * sizeof(double); // NOLINT |
| 113 | |
| 114 | rows_.reset(new int[num_rows_ + 1]); |
| 115 | cols_.reset(new int[max_num_nonzeros_]); |
| 116 | values_.reset(new double[max_num_nonzeros_]); |
| 117 | |
| 118 | // rows_ = 0 |
| 119 | fill(rows_.get(), rows_.get() + num_rows_ + 1, 0); |
| 120 | |
| 121 | // Copy the contents of the cols and values array in the order given |
| 122 | // by index and count the number of entries in each row. |
| 123 | for (int i = 0; i < m.num_nonzeros(); ++i) { |
| 124 | const int idx = index[i]; |
| 125 | ++rows_[m.rows()[idx] + 1]; |
| 126 | cols_[i] = m.cols()[idx]; |
| 127 | values_[i] = m.values()[idx]; |
| 128 | } |
| 129 | |
| 130 | // Find the cumulative sum of the row counts. |
| 131 | for (int i = 1; i < num_rows_ + 1; ++i) { |
| 132 | rows_[i] += rows_[i-1]; |
| 133 | } |
| 134 | |
| 135 | CHECK_EQ(num_nonzeros(), m.num_nonzeros()); |
| 136 | } |
| 137 | |
Sameer Agarwal | dd2b17d | 2012-08-16 19:34:57 -0700 | [diff] [blame] | 138 | #ifndef CERES_NO_PROTOCOL_BUFFERS |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 139 | CompressedRowSparseMatrix::CompressedRowSparseMatrix( |
| 140 | const SparseMatrixProto& outer_proto) { |
| 141 | CHECK(outer_proto.has_compressed_row_matrix()); |
| 142 | |
| 143 | const CompressedRowSparseMatrixProto& proto = |
| 144 | outer_proto.compressed_row_matrix(); |
| 145 | |
| 146 | num_rows_ = proto.num_rows(); |
| 147 | num_cols_ = proto.num_cols(); |
| 148 | |
| 149 | rows_.reset(new int[proto.rows_size()]); |
| 150 | cols_.reset(new int[proto.cols_size()]); |
| 151 | values_.reset(new double[proto.values_size()]); |
| 152 | |
| 153 | for (int i = 0; i < proto.rows_size(); ++i) { |
| 154 | rows_[i] = proto.rows(i); |
| 155 | } |
| 156 | |
| 157 | CHECK_EQ(proto.rows_size(), num_rows_ + 1); |
| 158 | CHECK_EQ(proto.cols_size(), proto.values_size()); |
| 159 | CHECK_EQ(proto.cols_size(), rows_[num_rows_]); |
| 160 | |
| 161 | for (int i = 0; i < proto.cols_size(); ++i) { |
| 162 | cols_[i] = proto.cols(i); |
| 163 | values_[i] = proto.values(i); |
| 164 | } |
| 165 | |
| 166 | max_num_nonzeros_ = proto.cols_size(); |
| 167 | } |
| 168 | #endif |
| 169 | |
| 170 | CompressedRowSparseMatrix::CompressedRowSparseMatrix(const double* diagonal, |
| 171 | int num_rows) { |
| 172 | CHECK_NOTNULL(diagonal); |
| 173 | |
| 174 | num_rows_ = num_rows; |
| 175 | num_cols_ = num_rows; |
| 176 | max_num_nonzeros_ = num_rows; |
| 177 | |
| 178 | rows_.reset(new int[num_rows_ + 1]); |
| 179 | cols_.reset(new int[num_rows_]); |
| 180 | values_.reset(new double[num_rows_]); |
| 181 | |
| 182 | rows_[0] = 0; |
| 183 | for (int i = 0; i < num_rows_; ++i) { |
| 184 | cols_[i] = i; |
| 185 | values_[i] = diagonal[i]; |
| 186 | rows_[i + 1] = i + 1; |
| 187 | } |
| 188 | |
| 189 | CHECK_EQ(num_nonzeros(), num_rows); |
| 190 | } |
| 191 | |
| 192 | CompressedRowSparseMatrix::~CompressedRowSparseMatrix() { |
| 193 | } |
| 194 | |
| 195 | void CompressedRowSparseMatrix::SetZero() { |
| 196 | fill(values_.get(), values_.get() + num_nonzeros(), 0.0); |
| 197 | } |
| 198 | |
| 199 | void CompressedRowSparseMatrix::RightMultiply(const double* x, |
| 200 | double* y) const { |
| 201 | CHECK_NOTNULL(x); |
| 202 | CHECK_NOTNULL(y); |
| 203 | |
| 204 | for (int r = 0; r < num_rows_; ++r) { |
| 205 | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| 206 | y[r] += values_[idx] * x[cols_[idx]]; |
| 207 | } |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | void CompressedRowSparseMatrix::LeftMultiply(const double* x, double* y) const { |
| 212 | CHECK_NOTNULL(x); |
| 213 | CHECK_NOTNULL(y); |
| 214 | |
| 215 | for (int r = 0; r < num_rows_; ++r) { |
| 216 | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| 217 | y[cols_[idx]] += values_[idx] * x[r]; |
| 218 | } |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | void CompressedRowSparseMatrix::SquaredColumnNorm(double* x) const { |
| 223 | CHECK_NOTNULL(x); |
| 224 | |
| 225 | fill(x, x + num_cols_, 0.0); |
| 226 | for (int idx = 0; idx < rows_[num_rows_]; ++idx) { |
| 227 | x[cols_[idx]] += values_[idx] * values_[idx]; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | void CompressedRowSparseMatrix::ScaleColumns(const double* scale) { |
| 232 | CHECK_NOTNULL(scale); |
| 233 | |
| 234 | for (int idx = 0; idx < rows_[num_rows_]; ++idx) { |
| 235 | values_[idx] *= scale[cols_[idx]]; |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { |
| 240 | CHECK_NOTNULL(dense_matrix); |
| 241 | dense_matrix->resize(num_rows_, num_cols_); |
| 242 | dense_matrix->setZero(); |
| 243 | |
| 244 | for (int r = 0; r < num_rows_; ++r) { |
| 245 | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| 246 | (*dense_matrix)(r, cols_[idx]) = values_[idx]; |
| 247 | } |
| 248 | } |
| 249 | } |
| 250 | |
Sameer Agarwal | dd2b17d | 2012-08-16 19:34:57 -0700 | [diff] [blame] | 251 | #ifndef CERES_NO_PROTOCOL_BUFFERS |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 252 | void CompressedRowSparseMatrix::ToProto(SparseMatrixProto* outer_proto) const { |
| 253 | CHECK_NOTNULL(outer_proto); |
| 254 | |
| 255 | outer_proto->Clear(); |
| 256 | CompressedRowSparseMatrixProto* proto |
| 257 | = outer_proto->mutable_compressed_row_matrix(); |
| 258 | |
| 259 | proto->set_num_rows(num_rows_); |
| 260 | proto->set_num_cols(num_cols_); |
| 261 | |
| 262 | for (int r = 0; r < num_rows_ + 1; ++r) { |
| 263 | proto->add_rows(rows_[r]); |
| 264 | } |
| 265 | |
| 266 | for (int idx = 0; idx < rows_[num_rows_]; ++idx) { |
| 267 | proto->add_cols(cols_[idx]); |
| 268 | proto->add_values(values_[idx]); |
| 269 | } |
| 270 | } |
| 271 | #endif |
| 272 | |
| 273 | void CompressedRowSparseMatrix::DeleteRows(int delta_rows) { |
| 274 | CHECK_GE(delta_rows, 0); |
| 275 | CHECK_LE(delta_rows, num_rows_); |
| 276 | |
| 277 | int new_num_rows = num_rows_ - delta_rows; |
| 278 | |
| 279 | num_rows_ = new_num_rows; |
| 280 | int* new_rows = new int[num_rows_ + 1]; |
| 281 | copy(rows_.get(), rows_.get() + num_rows_ + 1, new_rows); |
| 282 | rows_.reset(new_rows); |
| 283 | } |
| 284 | |
| 285 | void CompressedRowSparseMatrix::AppendRows(const CompressedRowSparseMatrix& m) { |
| 286 | CHECK_EQ(m.num_cols(), num_cols_); |
| 287 | |
| 288 | // Check if there is enough space. If not, then allocate new arrays |
| 289 | // to hold the combined matrix and copy the contents of this matrix |
| 290 | // into it. |
| 291 | if (max_num_nonzeros_ < num_nonzeros() + m.num_nonzeros()) { |
| 292 | int new_max_num_nonzeros = num_nonzeros() + m.num_nonzeros(); |
| 293 | |
| 294 | VLOG(1) << "Reallocating " << sizeof(int) * new_max_num_nonzeros; // NOLINT |
| 295 | |
| 296 | int* new_cols = new int[new_max_num_nonzeros]; |
| 297 | copy(cols_.get(), cols_.get() + max_num_nonzeros_, new_cols); |
| 298 | cols_.reset(new_cols); |
| 299 | |
| 300 | double* new_values = new double[new_max_num_nonzeros]; |
| 301 | copy(values_.get(), values_.get() + max_num_nonzeros_, new_values); |
| 302 | values_.reset(new_values); |
| 303 | |
| 304 | max_num_nonzeros_ = new_max_num_nonzeros; |
| 305 | } |
| 306 | |
| 307 | // Copy the contents of m into this matrix. |
| 308 | copy(m.cols(), m.cols() + m.num_nonzeros(), cols_.get() + num_nonzeros()); |
| 309 | copy(m.values(), |
| 310 | m.values() + m.num_nonzeros(), |
| 311 | values_.get() + num_nonzeros()); |
| 312 | |
| 313 | // Create the new rows array to hold the enlarged matrix. |
| 314 | int* new_rows = new int[num_rows_ + m.num_rows() + 1]; |
| 315 | // The first num_rows_ entries are the same |
| 316 | copy(rows_.get(), rows_.get() + num_rows_, new_rows); |
| 317 | |
| 318 | // new_rows = [rows_, m.row() + rows_[num_rows_]] |
| 319 | fill(new_rows + num_rows_, |
| 320 | new_rows + num_rows_ + m.num_rows() + 1, |
| 321 | rows_[num_rows_]); |
| 322 | |
| 323 | for (int r = 0; r < m.num_rows() + 1; ++r) { |
| 324 | new_rows[num_rows_ + r] += m.rows()[r]; |
| 325 | } |
| 326 | |
| 327 | rows_.reset(new_rows); |
| 328 | num_rows_ += m.num_rows(); |
| 329 | } |
| 330 | |
Sameer Agarwal | 82f4b88 | 2012-05-06 21:05:28 -0700 | [diff] [blame] | 331 | void CompressedRowSparseMatrix::ToTextFile(FILE* file) const { |
| 332 | CHECK_NOTNULL(file); |
| 333 | for (int r = 0; r < num_rows_; ++r) { |
| 334 | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| 335 | fprintf(file, "% 10d % 10d %17f\n", r, cols_[idx], values_[idx]); |
| 336 | } |
| 337 | } |
| 338 | } |
| 339 | |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 340 | void CompressedRowSparseMatrix::ToCRSMatrix(CRSMatrix* matrix) const { |
| 341 | matrix->num_rows = num_rows(); |
| 342 | matrix->num_cols = num_cols(); |
| 343 | |
| 344 | matrix->rows.resize(matrix->num_rows + 1); |
| 345 | matrix->cols.resize(num_nonzeros()); |
| 346 | matrix->values.resize(num_nonzeros()); |
| 347 | |
| 348 | copy(rows_.get(), rows_.get() + matrix->num_rows + 1, matrix->rows.begin()); |
| 349 | copy(cols_.get(), cols_.get() + num_nonzeros(), matrix->cols.begin()); |
| 350 | copy(values_.get(), values_.get() + num_nonzeros(), matrix->values.begin()); |
| 351 | } |
| 352 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 353 | } // namespace internal |
| 354 | } // namespace ceres |