| NIST/ITL StRD | |
| Dataset Name: Rat42 (Rat42.dat) | |
| File Format: ASCII | |
| Starting Values (lines 41 to 43) | |
| Certified Values (lines 41 to 48) | |
| Data (lines 61 to 69) | |
| Procedure: Nonlinear Least Squares Regression | |
| Description: This model and data are an example of fitting | |
| sigmoidal growth curves taken from Ratkowsky (1983). | |
| The response variable is pasture yield, and the | |
| predictor variable is growing time. | |
| Reference: Ratkowsky, D.A. (1983). | |
| Nonlinear Regression Modeling. | |
| New York, NY: Marcel Dekker, pp. 61 and 88. | |
| Data: 1 Response (y = pasture yield) | |
| 1 Predictor (x = growing time) | |
| 9 Observations | |
| Higher Level of Difficulty | |
| Observed Data | |
| Model: Exponential Class | |
| 3 Parameters (b1 to b3) | |
| y = b1 / (1+exp[b2-b3*x]) + e | |
| Starting Values Certified Values | |
| Start 1 Start 2 Parameter Standard Deviation | |
| b1 = 100 75 7.2462237576E+01 1.7340283401E+00 | |
| b2 = 1 2.5 2.6180768402E+00 8.8295217536E-02 | |
| b3 = 0.1 0.07 6.7359200066E-02 3.4465663377E-03 | |
| Residual Sum of Squares: 8.0565229338E+00 | |
| Residual Standard Deviation: 1.1587725499E+00 | |
| Degrees of Freedom: 6 | |
| Number of Observations: 9 | |
| Data: y x | |
| 8.930E0 9.000E0 | |
| 10.800E0 14.000E0 | |
| 18.590E0 21.000E0 | |
| 22.330E0 28.000E0 | |
| 39.350E0 42.000E0 | |
| 56.110E0 57.000E0 | |
| 61.730E0 63.000E0 | |
| 64.620E0 70.000E0 | |
| 67.080E0 79.000E0 |