|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2017 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #ifndef CERES_INTERNAL_INNER_PRODUCT_COMPUTER_H_ | 
|  | #define CERES_INTERNAL_INNER_PRODUCT_COMPUTER_H_ | 
|  |  | 
|  | #include <memory> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/block_sparse_matrix.h" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/internal/disable_warnings.h" | 
|  | #include "ceres/internal/export.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | // This class is used to repeatedly compute the inner product | 
|  | // | 
|  | //   result = m' * m | 
|  | // | 
|  | // where the sparsity structure of m remains constant across calls. | 
|  | // | 
|  | // Upon creation, the class computes and caches information needed to | 
|  | // compute v, and then uses it to efficiently compute the product | 
|  | // every time InnerProductComputer::Compute is called. | 
|  | // | 
|  | // See sparse_normal_cholesky_solver.cc for example usage. | 
|  | // | 
|  | // Note that the result matrix is a block upper or lower-triangular | 
|  | // matrix, i.e., it will contain entries in the upper or lower | 
|  | // triangular part of the matrix corresponding to the block that occur | 
|  | // along its diagonal. | 
|  | // | 
|  | // This is not a problem as sparse linear algebra libraries can ignore | 
|  | // these entries with ease and the space used is minimal/linear in the | 
|  | // size of the matrices. | 
|  | class CERES_NO_EXPORT InnerProductComputer { | 
|  | public: | 
|  | // Factory | 
|  | // | 
|  | // m is the input matrix | 
|  | // | 
|  | // Since m' * m is a symmetric matrix, we only compute half of the | 
|  | // matrix and the value of storage_type which must be | 
|  | // UPPER_TRIANGULAR or LOWER_TRIANGULAR determines which half is | 
|  | // computed. | 
|  | // | 
|  | // The user must ensure that the matrix m is valid for the life time | 
|  | // of this object. | 
|  | static std::unique_ptr<InnerProductComputer> Create( | 
|  | const BlockSparseMatrix& m, | 
|  | CompressedRowSparseMatrix::StorageType storage_type); | 
|  |  | 
|  | // This factory method allows the user control over range of row | 
|  | // blocks of m that should be used to compute the inner product. | 
|  | // | 
|  | // a = m(start_row_block : end_row_block, :); | 
|  | // result = a' * a; | 
|  | static std::unique_ptr<InnerProductComputer> Create( | 
|  | const BlockSparseMatrix& m, | 
|  | int start_row_block, | 
|  | int end_row_block, | 
|  | CompressedRowSparseMatrix::StorageType storage_type); | 
|  |  | 
|  | // Update result_ to be numerically equal to m' * m. | 
|  | void Compute(); | 
|  |  | 
|  | // Accessors for the result containing the inner product. | 
|  | // | 
|  | // Compute must be called before accessing this result for | 
|  | // the first time. | 
|  | const CompressedRowSparseMatrix& result() const { return *result_; } | 
|  | CompressedRowSparseMatrix* mutable_result() const { return result_.get(); } | 
|  |  | 
|  | private: | 
|  | // A ProductTerm is a term in the block inner product of a matrix | 
|  | // with itself. | 
|  | struct ProductTerm { | 
|  | ProductTerm(const int row, const int col, const int index) | 
|  | : row(row), col(col), index(index) {} | 
|  |  | 
|  | bool operator<(const ProductTerm& right) const { | 
|  | if (row == right.row) { | 
|  | if (col == right.col) { | 
|  | return index < right.index; | 
|  | } | 
|  | return col < right.col; | 
|  | } | 
|  | return row < right.row; | 
|  | } | 
|  |  | 
|  | int row; | 
|  | int col; | 
|  | int index; | 
|  | }; | 
|  |  | 
|  | InnerProductComputer(const BlockSparseMatrix& m, | 
|  | int start_row_block, | 
|  | int end_row_block); | 
|  |  | 
|  | void Init(CompressedRowSparseMatrix::StorageType storage_type); | 
|  |  | 
|  | std::unique_ptr<CompressedRowSparseMatrix> CreateResultMatrix( | 
|  | const CompressedRowSparseMatrix::StorageType storage_type, | 
|  | int num_nonzeros); | 
|  |  | 
|  | int ComputeNonzeros(const std::vector<ProductTerm>& product_terms, | 
|  | std::vector<int>* row_block_nnz); | 
|  |  | 
|  | void ComputeOffsetsAndCreateResultMatrix( | 
|  | const CompressedRowSparseMatrix::StorageType storage_type, | 
|  | const std::vector<ProductTerm>& product_terms); | 
|  |  | 
|  | const BlockSparseMatrix& m_; | 
|  | const int start_row_block_; | 
|  | const int end_row_block_; | 
|  | std::unique_ptr<CompressedRowSparseMatrix> result_; | 
|  |  | 
|  | // For each term in the inner product, result_offsets_ contains the | 
|  | // location in the values array of the result_ matrix where it | 
|  | // should be stored. | 
|  | // | 
|  | // This is the principal look up table that allows this class to | 
|  | // compute the inner product fast. | 
|  | std::vector<int> result_offsets_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres::internal | 
|  |  | 
|  | #include "ceres/internal/reenable_warnings.h" | 
|  |  | 
|  | #endif  // CERES_INTERNAL_INNER_PRODUCT_COMPUTER_H_ |