| // Copyright 2007, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // This is the main header file a user should include. | 
 |  | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ | 
 |  | 
 | // This file implements the following syntax: | 
 | // | 
 | //   ON_CALL(mock_object, Method(...)) | 
 | //     .With(...) ? | 
 | //     .WillByDefault(...); | 
 | // | 
 | // where With() is optional and WillByDefault() must appear exactly | 
 | // once. | 
 | // | 
 | //   EXPECT_CALL(mock_object, Method(...)) | 
 | //     .With(...) ? | 
 | //     .Times(...) ? | 
 | //     .InSequence(...) * | 
 | //     .WillOnce(...) * | 
 | //     .WillRepeatedly(...) ? | 
 | //     .RetiresOnSaturation() ? ; | 
 | // | 
 | // where all clauses are optional and WillOnce() can be repeated. | 
 |  | 
 | // Copyright 2007, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // The ACTION* family of macros can be used in a namespace scope to | 
 | // define custom actions easily.  The syntax: | 
 | // | 
 | //   ACTION(name) { statements; } | 
 | // | 
 | // will define an action with the given name that executes the | 
 | // statements.  The value returned by the statements will be used as | 
 | // the return value of the action.  Inside the statements, you can | 
 | // refer to the K-th (0-based) argument of the mock function by | 
 | // 'argK', and refer to its type by 'argK_type'.  For example: | 
 | // | 
 | //   ACTION(IncrementArg1) { | 
 | //     arg1_type temp = arg1; | 
 | //     return ++(*temp); | 
 | //   } | 
 | // | 
 | // allows you to write | 
 | // | 
 | //   ...WillOnce(IncrementArg1()); | 
 | // | 
 | // You can also refer to the entire argument tuple and its type by | 
 | // 'args' and 'args_type', and refer to the mock function type and its | 
 | // return type by 'function_type' and 'return_type'. | 
 | // | 
 | // Note that you don't need to specify the types of the mock function | 
 | // arguments.  However rest assured that your code is still type-safe: | 
 | // you'll get a compiler error if *arg1 doesn't support the ++ | 
 | // operator, or if the type of ++(*arg1) isn't compatible with the | 
 | // mock function's return type, for example. | 
 | // | 
 | // Sometimes you'll want to parameterize the action.   For that you can use | 
 | // another macro: | 
 | // | 
 | //   ACTION_P(name, param_name) { statements; } | 
 | // | 
 | // For example: | 
 | // | 
 | //   ACTION_P(Add, n) { return arg0 + n; } | 
 | // | 
 | // will allow you to write: | 
 | // | 
 | //   ...WillOnce(Add(5)); | 
 | // | 
 | // Note that you don't need to provide the type of the parameter | 
 | // either.  If you need to reference the type of a parameter named | 
 | // 'foo', you can write 'foo_type'.  For example, in the body of | 
 | // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type | 
 | // of 'n'. | 
 | // | 
 | // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support | 
 | // multi-parameter actions. | 
 | // | 
 | // For the purpose of typing, you can view | 
 | // | 
 | //   ACTION_Pk(Foo, p1, ..., pk) { ... } | 
 | // | 
 | // as shorthand for | 
 | // | 
 | //   template <typename p1_type, ..., typename pk_type> | 
 | //   FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } | 
 | // | 
 | // In particular, you can provide the template type arguments | 
 | // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); | 
 | // although usually you can rely on the compiler to infer the types | 
 | // for you automatically.  You can assign the result of expression | 
 | // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., | 
 | // pk_type>.  This can be useful when composing actions. | 
 | // | 
 | // You can also overload actions with different numbers of parameters: | 
 | // | 
 | //   ACTION_P(Plus, a) { ... } | 
 | //   ACTION_P2(Plus, a, b) { ... } | 
 | // | 
 | // While it's tempting to always use the ACTION* macros when defining | 
 | // a new action, you should also consider implementing ActionInterface | 
 | // or using MakePolymorphicAction() instead, especially if you need to | 
 | // use the action a lot.  While these approaches require more work, | 
 | // they give you more control on the types of the mock function | 
 | // arguments and the action parameters, which in general leads to | 
 | // better compiler error messages that pay off in the long run.  They | 
 | // also allow overloading actions based on parameter types (as opposed | 
 | // to just based on the number of parameters). | 
 | // | 
 | // CAVEAT: | 
 | // | 
 | // ACTION*() can only be used in a namespace scope as templates cannot be | 
 | // declared inside of a local class. | 
 | // Users can, however, define any local functors (e.g. a lambda) that | 
 | // can be used as actions. | 
 | // | 
 | // MORE INFORMATION: | 
 | // | 
 | // To learn more about using these macros, please search for 'ACTION' on | 
 | // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md | 
 |  | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | 
 |  | 
 | #ifndef _WIN32_WCE | 
 | # include <errno.h> | 
 | #endif | 
 |  | 
 | #include <algorithm> | 
 | #include <functional> | 
 | #include <memory> | 
 | #include <string> | 
 | #include <tuple> | 
 | #include <type_traits> | 
 | #include <utility> | 
 |  | 
 | // Copyright 2007, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // This file defines some utilities useful for implementing Google | 
 | // Mock.  They are subject to change without notice, so please DO NOT | 
 | // USE THEM IN USER CODE. | 
 |  | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ | 
 |  | 
 | #include <stdio.h> | 
 | #include <ostream>  // NOLINT | 
 | #include <string> | 
 | #include <type_traits> | 
 | // Copyright 2008, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | // | 
 | // Low-level types and utilities for porting Google Mock to various | 
 | // platforms.  All macros ending with _ and symbols defined in an | 
 | // internal namespace are subject to change without notice.  Code | 
 | // outside Google Mock MUST NOT USE THEM DIRECTLY.  Macros that don't | 
 | // end with _ are part of Google Mock's public API and can be used by | 
 | // code outside Google Mock. | 
 |  | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ | 
 |  | 
 | #include <assert.h> | 
 | #include <stdlib.h> | 
 | #include <cstdint> | 
 | #include <iostream> | 
 |  | 
 | // Most of the utilities needed for porting Google Mock are also | 
 | // required for Google Test and are defined in gtest-port.h. | 
 | // | 
 | // Note to maintainers: to reduce code duplication, prefer adding | 
 | // portability utilities to Google Test's gtest-port.h instead of | 
 | // here, as Google Mock depends on Google Test.  Only add a utility | 
 | // here if it's truly specific to Google Mock. | 
 |  | 
 | #include "gtest/gtest.h" | 
 | // Copyright 2015, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Injection point for custom user configurations. See README for details | 
 | // | 
 | // ** Custom implementation starts here ** | 
 |  | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ | 
 |  | 
 | // For MS Visual C++, check the compiler version. At least VS 2015 is | 
 | // required to compile Google Mock. | 
 | #if defined(_MSC_VER) && _MSC_VER < 1900 | 
 | # error "At least Visual C++ 2015 (14.0) is required to compile Google Mock." | 
 | #endif | 
 |  | 
 | // Macro for referencing flags.  This is public as we want the user to | 
 | // use this syntax to reference Google Mock flags. | 
 | #define GMOCK_FLAG(name) FLAGS_gmock_##name | 
 |  | 
 | #if !defined(GMOCK_DECLARE_bool_) | 
 |  | 
 | // Macros for declaring flags. | 
 | # define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name) | 
 | # define GMOCK_DECLARE_int32_(name) extern GTEST_API_ int32_t GMOCK_FLAG(name) | 
 | # define GMOCK_DECLARE_string_(name) \ | 
 |     extern GTEST_API_ ::std::string GMOCK_FLAG(name) | 
 |  | 
 | // Macros for defining flags. | 
 | # define GMOCK_DEFINE_bool_(name, default_val, doc) \ | 
 |     GTEST_API_ bool GMOCK_FLAG(name) = (default_val) | 
 | # define GMOCK_DEFINE_int32_(name, default_val, doc) \ | 
 |     GTEST_API_ int32_t GMOCK_FLAG(name) = (default_val) | 
 | # define GMOCK_DEFINE_string_(name, default_val, doc) \ | 
 |     GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val) | 
 |  | 
 | #endif  // !defined(GMOCK_DECLARE_bool_) | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ | 
 |  | 
 | namespace testing { | 
 |  | 
 | template <typename> | 
 | class Matcher; | 
 |  | 
 | namespace internal { | 
 |  | 
 | // Silence MSVC C4100 (unreferenced formal parameter) and | 
 | // C4805('==': unsafe mix of type 'const int' and type 'const bool') | 
 | #ifdef _MSC_VER | 
 | # pragma warning(push) | 
 | # pragma warning(disable:4100) | 
 | # pragma warning(disable:4805) | 
 | #endif | 
 |  | 
 | // Joins a vector of strings as if they are fields of a tuple; returns | 
 | // the joined string. | 
 | GTEST_API_ std::string JoinAsTuple(const Strings& fields); | 
 |  | 
 | // Converts an identifier name to a space-separated list of lower-case | 
 | // words.  Each maximum substring of the form [A-Za-z][a-z]*|\d+ is | 
 | // treated as one word.  For example, both "FooBar123" and | 
 | // "foo_bar_123" are converted to "foo bar 123". | 
 | GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name); | 
 |  | 
 | // GetRawPointer(p) returns the raw pointer underlying p when p is a | 
 | // smart pointer, or returns p itself when p is already a raw pointer. | 
 | // The following default implementation is for the smart pointer case. | 
 | template <typename Pointer> | 
 | inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) { | 
 |   return p.get(); | 
 | } | 
 | // This overloaded version is for the raw pointer case. | 
 | template <typename Element> | 
 | inline Element* GetRawPointer(Element* p) { return p; } | 
 |  | 
 | // MSVC treats wchar_t as a native type usually, but treats it as the | 
 | // same as unsigned short when the compiler option /Zc:wchar_t- is | 
 | // specified.  It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t | 
 | // is a native type. | 
 | #if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED) | 
 | // wchar_t is a typedef. | 
 | #else | 
 | # define GMOCK_WCHAR_T_IS_NATIVE_ 1 | 
 | #endif | 
 |  | 
 | // In what follows, we use the term "kind" to indicate whether a type | 
 | // is bool, an integer type (excluding bool), a floating-point type, | 
 | // or none of them.  This categorization is useful for determining | 
 | // when a matcher argument type can be safely converted to another | 
 | // type in the implementation of SafeMatcherCast. | 
 | enum TypeKind { | 
 |   kBool, kInteger, kFloatingPoint, kOther | 
 | }; | 
 |  | 
 | // KindOf<T>::value is the kind of type T. | 
 | template <typename T> struct KindOf { | 
 |   enum { value = kOther };  // The default kind. | 
 | }; | 
 |  | 
 | // This macro declares that the kind of 'type' is 'kind'. | 
 | #define GMOCK_DECLARE_KIND_(type, kind) \ | 
 |   template <> struct KindOf<type> { enum { value = kind }; } | 
 |  | 
 | GMOCK_DECLARE_KIND_(bool, kBool); | 
 |  | 
 | // All standard integer types. | 
 | GMOCK_DECLARE_KIND_(char, kInteger); | 
 | GMOCK_DECLARE_KIND_(signed char, kInteger); | 
 | GMOCK_DECLARE_KIND_(unsigned char, kInteger); | 
 | GMOCK_DECLARE_KIND_(short, kInteger);  // NOLINT | 
 | GMOCK_DECLARE_KIND_(unsigned short, kInteger);  // NOLINT | 
 | GMOCK_DECLARE_KIND_(int, kInteger); | 
 | GMOCK_DECLARE_KIND_(unsigned int, kInteger); | 
 | GMOCK_DECLARE_KIND_(long, kInteger);  // NOLINT | 
 | GMOCK_DECLARE_KIND_(unsigned long, kInteger);  // NOLINT | 
 | GMOCK_DECLARE_KIND_(long long, kInteger);  // NOLINT | 
 | GMOCK_DECLARE_KIND_(unsigned long long, kInteger);  // NOLINT | 
 |  | 
 | #if GMOCK_WCHAR_T_IS_NATIVE_ | 
 | GMOCK_DECLARE_KIND_(wchar_t, kInteger); | 
 | #endif | 
 |  | 
 | // All standard floating-point types. | 
 | GMOCK_DECLARE_KIND_(float, kFloatingPoint); | 
 | GMOCK_DECLARE_KIND_(double, kFloatingPoint); | 
 | GMOCK_DECLARE_KIND_(long double, kFloatingPoint); | 
 |  | 
 | #undef GMOCK_DECLARE_KIND_ | 
 |  | 
 | // Evaluates to the kind of 'type'. | 
 | #define GMOCK_KIND_OF_(type) \ | 
 |   static_cast< ::testing::internal::TypeKind>( \ | 
 |       ::testing::internal::KindOf<type>::value) | 
 |  | 
 | // LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value | 
 | // is true if and only if arithmetic type From can be losslessly converted to | 
 | // arithmetic type To. | 
 | // | 
 | // It's the user's responsibility to ensure that both From and To are | 
 | // raw (i.e. has no CV modifier, is not a pointer, and is not a | 
 | // reference) built-in arithmetic types, kFromKind is the kind of | 
 | // From, and kToKind is the kind of To; the value is | 
 | // implementation-defined when the above pre-condition is violated. | 
 | template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To> | 
 | using LosslessArithmeticConvertibleImpl = std::integral_constant< | 
 |     bool, | 
 |     // clang-format off | 
 |       // Converting from bool is always lossless | 
 |       (kFromKind == kBool) ? true | 
 |       // Converting between any other type kinds will be lossy if the type | 
 |       // kinds are not the same. | 
 |     : (kFromKind != kToKind) ? false | 
 |     : (kFromKind == kInteger && | 
 |        // Converting between integers of different widths is allowed so long | 
 |        // as the conversion does not go from signed to unsigned. | 
 |       (((sizeof(From) < sizeof(To)) && | 
 |         !(std::is_signed<From>::value && !std::is_signed<To>::value)) || | 
 |        // Converting between integers of the same width only requires the | 
 |        // two types to have the same signedness. | 
 |        ((sizeof(From) == sizeof(To)) && | 
 |         (std::is_signed<From>::value == std::is_signed<To>::value))) | 
 |        ) ? true | 
 |       // Floating point conversions are lossless if and only if `To` is at least | 
 |       // as wide as `From`. | 
 |     : (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true | 
 |     : false | 
 |     // clang-format on | 
 |     >; | 
 |  | 
 | // LosslessArithmeticConvertible<From, To>::value is true if and only if | 
 | // arithmetic type From can be losslessly converted to arithmetic type To. | 
 | // | 
 | // It's the user's responsibility to ensure that both From and To are | 
 | // raw (i.e. has no CV modifier, is not a pointer, and is not a | 
 | // reference) built-in arithmetic types; the value is | 
 | // implementation-defined when the above pre-condition is violated. | 
 | template <typename From, typename To> | 
 | using LosslessArithmeticConvertible = | 
 |     LosslessArithmeticConvertibleImpl<GMOCK_KIND_OF_(From), From, | 
 |                                       GMOCK_KIND_OF_(To), To>; | 
 |  | 
 | // This interface knows how to report a Google Mock failure (either | 
 | // non-fatal or fatal). | 
 | class FailureReporterInterface { | 
 |  public: | 
 |   // The type of a failure (either non-fatal or fatal). | 
 |   enum FailureType { | 
 |     kNonfatal, kFatal | 
 |   }; | 
 |  | 
 |   virtual ~FailureReporterInterface() {} | 
 |  | 
 |   // Reports a failure that occurred at the given source file location. | 
 |   virtual void ReportFailure(FailureType type, const char* file, int line, | 
 |                              const std::string& message) = 0; | 
 | }; | 
 |  | 
 | // Returns the failure reporter used by Google Mock. | 
 | GTEST_API_ FailureReporterInterface* GetFailureReporter(); | 
 |  | 
 | // Asserts that condition is true; aborts the process with the given | 
 | // message if condition is false.  We cannot use LOG(FATAL) or CHECK() | 
 | // as Google Mock might be used to mock the log sink itself.  We | 
 | // inline this function to prevent it from showing up in the stack | 
 | // trace. | 
 | inline void Assert(bool condition, const char* file, int line, | 
 |                    const std::string& msg) { | 
 |   if (!condition) { | 
 |     GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal, | 
 |                                         file, line, msg); | 
 |   } | 
 | } | 
 | inline void Assert(bool condition, const char* file, int line) { | 
 |   Assert(condition, file, line, "Assertion failed."); | 
 | } | 
 |  | 
 | // Verifies that condition is true; generates a non-fatal failure if | 
 | // condition is false. | 
 | inline void Expect(bool condition, const char* file, int line, | 
 |                    const std::string& msg) { | 
 |   if (!condition) { | 
 |     GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal, | 
 |                                         file, line, msg); | 
 |   } | 
 | } | 
 | inline void Expect(bool condition, const char* file, int line) { | 
 |   Expect(condition, file, line, "Expectation failed."); | 
 | } | 
 |  | 
 | // Severity level of a log. | 
 | enum LogSeverity { | 
 |   kInfo = 0, | 
 |   kWarning = 1 | 
 | }; | 
 |  | 
 | // Valid values for the --gmock_verbose flag. | 
 |  | 
 | // All logs (informational and warnings) are printed. | 
 | const char kInfoVerbosity[] = "info"; | 
 | // Only warnings are printed. | 
 | const char kWarningVerbosity[] = "warning"; | 
 | // No logs are printed. | 
 | const char kErrorVerbosity[] = "error"; | 
 |  | 
 | // Returns true if and only if a log with the given severity is visible | 
 | // according to the --gmock_verbose flag. | 
 | GTEST_API_ bool LogIsVisible(LogSeverity severity); | 
 |  | 
 | // Prints the given message to stdout if and only if 'severity' >= the level | 
 | // specified by the --gmock_verbose flag.  If stack_frames_to_skip >= | 
 | // 0, also prints the stack trace excluding the top | 
 | // stack_frames_to_skip frames.  In opt mode, any positive | 
 | // stack_frames_to_skip is treated as 0, since we don't know which | 
 | // function calls will be inlined by the compiler and need to be | 
 | // conservative. | 
 | GTEST_API_ void Log(LogSeverity severity, const std::string& message, | 
 |                     int stack_frames_to_skip); | 
 |  | 
 | // A marker class that is used to resolve parameterless expectations to the | 
 | // correct overload. This must not be instantiable, to prevent client code from | 
 | // accidentally resolving to the overload; for example: | 
 | // | 
 | //    ON_CALL(mock, Method({}, nullptr))... | 
 | // | 
 | class WithoutMatchers { | 
 |  private: | 
 |   WithoutMatchers() {} | 
 |   friend GTEST_API_ WithoutMatchers GetWithoutMatchers(); | 
 | }; | 
 |  | 
 | // Internal use only: access the singleton instance of WithoutMatchers. | 
 | GTEST_API_ WithoutMatchers GetWithoutMatchers(); | 
 |  | 
 | // Disable MSVC warnings for infinite recursion, since in this case the | 
 | // the recursion is unreachable. | 
 | #ifdef _MSC_VER | 
 | # pragma warning(push) | 
 | # pragma warning(disable:4717) | 
 | #endif | 
 |  | 
 | // Invalid<T>() is usable as an expression of type T, but will terminate | 
 | // the program with an assertion failure if actually run.  This is useful | 
 | // when a value of type T is needed for compilation, but the statement | 
 | // will not really be executed (or we don't care if the statement | 
 | // crashes). | 
 | template <typename T> | 
 | inline T Invalid() { | 
 |   Assert(false, "", -1, "Internal error: attempt to return invalid value"); | 
 |   // This statement is unreachable, and would never terminate even if it | 
 |   // could be reached. It is provided only to placate compiler warnings | 
 |   // about missing return statements. | 
 |   return Invalid<T>(); | 
 | } | 
 |  | 
 | #ifdef _MSC_VER | 
 | # pragma warning(pop) | 
 | #endif | 
 |  | 
 | // Given a raw type (i.e. having no top-level reference or const | 
 | // modifier) RawContainer that's either an STL-style container or a | 
 | // native array, class StlContainerView<RawContainer> has the | 
 | // following members: | 
 | // | 
 | //   - type is a type that provides an STL-style container view to | 
 | //     (i.e. implements the STL container concept for) RawContainer; | 
 | //   - const_reference is a type that provides a reference to a const | 
 | //     RawContainer; | 
 | //   - ConstReference(raw_container) returns a const reference to an STL-style | 
 | //     container view to raw_container, which is a RawContainer. | 
 | //   - Copy(raw_container) returns an STL-style container view of a | 
 | //     copy of raw_container, which is a RawContainer. | 
 | // | 
 | // This generic version is used when RawContainer itself is already an | 
 | // STL-style container. | 
 | template <class RawContainer> | 
 | class StlContainerView { | 
 |  public: | 
 |   typedef RawContainer type; | 
 |   typedef const type& const_reference; | 
 |  | 
 |   static const_reference ConstReference(const RawContainer& container) { | 
 |     static_assert(!std::is_const<RawContainer>::value, | 
 |                   "RawContainer type must not be const"); | 
 |     return container; | 
 |   } | 
 |   static type Copy(const RawContainer& container) { return container; } | 
 | }; | 
 |  | 
 | // This specialization is used when RawContainer is a native array type. | 
 | template <typename Element, size_t N> | 
 | class StlContainerView<Element[N]> { | 
 |  public: | 
 |   typedef typename std::remove_const<Element>::type RawElement; | 
 |   typedef internal::NativeArray<RawElement> type; | 
 |   // NativeArray<T> can represent a native array either by value or by | 
 |   // reference (selected by a constructor argument), so 'const type' | 
 |   // can be used to reference a const native array.  We cannot | 
 |   // 'typedef const type& const_reference' here, as that would mean | 
 |   // ConstReference() has to return a reference to a local variable. | 
 |   typedef const type const_reference; | 
 |  | 
 |   static const_reference ConstReference(const Element (&array)[N]) { | 
 |     static_assert(std::is_same<Element, RawElement>::value, | 
 |                   "Element type must not be const"); | 
 |     return type(array, N, RelationToSourceReference()); | 
 |   } | 
 |   static type Copy(const Element (&array)[N]) { | 
 |     return type(array, N, RelationToSourceCopy()); | 
 |   } | 
 | }; | 
 |  | 
 | // This specialization is used when RawContainer is a native array | 
 | // represented as a (pointer, size) tuple. | 
 | template <typename ElementPointer, typename Size> | 
 | class StlContainerView< ::std::tuple<ElementPointer, Size> > { | 
 |  public: | 
 |   typedef typename std::remove_const< | 
 |       typename std::pointer_traits<ElementPointer>::element_type>::type | 
 |       RawElement; | 
 |   typedef internal::NativeArray<RawElement> type; | 
 |   typedef const type const_reference; | 
 |  | 
 |   static const_reference ConstReference( | 
 |       const ::std::tuple<ElementPointer, Size>& array) { | 
 |     return type(std::get<0>(array), std::get<1>(array), | 
 |                 RelationToSourceReference()); | 
 |   } | 
 |   static type Copy(const ::std::tuple<ElementPointer, Size>& array) { | 
 |     return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy()); | 
 |   } | 
 | }; | 
 |  | 
 | // The following specialization prevents the user from instantiating | 
 | // StlContainer with a reference type. | 
 | template <typename T> class StlContainerView<T&>; | 
 |  | 
 | // A type transform to remove constness from the first part of a pair. | 
 | // Pairs like that are used as the value_type of associative containers, | 
 | // and this transform produces a similar but assignable pair. | 
 | template <typename T> | 
 | struct RemoveConstFromKey { | 
 |   typedef T type; | 
 | }; | 
 |  | 
 | // Partially specialized to remove constness from std::pair<const K, V>. | 
 | template <typename K, typename V> | 
 | struct RemoveConstFromKey<std::pair<const K, V> > { | 
 |   typedef std::pair<K, V> type; | 
 | }; | 
 |  | 
 | // Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to | 
 | // reduce code size. | 
 | GTEST_API_ void IllegalDoDefault(const char* file, int line); | 
 |  | 
 | template <typename F, typename Tuple, size_t... Idx> | 
 | auto ApplyImpl(F&& f, Tuple&& args, IndexSequence<Idx...>) -> decltype( | 
 |     std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...)) { | 
 |   return std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...); | 
 | } | 
 |  | 
 | // Apply the function to a tuple of arguments. | 
 | template <typename F, typename Tuple> | 
 | auto Apply(F&& f, Tuple&& args) -> decltype( | 
 |     ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args), | 
 |               MakeIndexSequence<std::tuple_size< | 
 |                   typename std::remove_reference<Tuple>::type>::value>())) { | 
 |   return ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args), | 
 |                    MakeIndexSequence<std::tuple_size< | 
 |                        typename std::remove_reference<Tuple>::type>::value>()); | 
 | } | 
 |  | 
 | // Template struct Function<F>, where F must be a function type, contains | 
 | // the following typedefs: | 
 | // | 
 | //   Result:               the function's return type. | 
 | //   Arg<N>:               the type of the N-th argument, where N starts with 0. | 
 | //   ArgumentTuple:        the tuple type consisting of all parameters of F. | 
 | //   ArgumentMatcherTuple: the tuple type consisting of Matchers for all | 
 | //                         parameters of F. | 
 | //   MakeResultVoid:       the function type obtained by substituting void | 
 | //                         for the return type of F. | 
 | //   MakeResultIgnoredValue: | 
 | //                         the function type obtained by substituting Something | 
 | //                         for the return type of F. | 
 | template <typename T> | 
 | struct Function; | 
 |  | 
 | template <typename R, typename... Args> | 
 | struct Function<R(Args...)> { | 
 |   using Result = R; | 
 |   static constexpr size_t ArgumentCount = sizeof...(Args); | 
 |   template <size_t I> | 
 |   using Arg = ElemFromList<I, Args...>; | 
 |   using ArgumentTuple = std::tuple<Args...>; | 
 |   using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>; | 
 |   using MakeResultVoid = void(Args...); | 
 |   using MakeResultIgnoredValue = IgnoredValue(Args...); | 
 | }; | 
 |  | 
 | template <typename R, typename... Args> | 
 | constexpr size_t Function<R(Args...)>::ArgumentCount; | 
 |  | 
 | #ifdef _MSC_VER | 
 | # pragma warning(pop) | 
 | #endif | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace testing | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ | 
 |  | 
 | // Expands and concatenates the arguments. Constructed macros reevaluate. | 
 | #define GMOCK_PP_CAT(_1, _2) GMOCK_PP_INTERNAL_CAT(_1, _2) | 
 |  | 
 | // Expands and stringifies the only argument. | 
 | #define GMOCK_PP_STRINGIZE(...) GMOCK_PP_INTERNAL_STRINGIZE(__VA_ARGS__) | 
 |  | 
 | // Returns empty. Given a variadic number of arguments. | 
 | #define GMOCK_PP_EMPTY(...) | 
 |  | 
 | // Returns a comma. Given a variadic number of arguments. | 
 | #define GMOCK_PP_COMMA(...) , | 
 |  | 
 | // Returns the only argument. | 
 | #define GMOCK_PP_IDENTITY(_1) _1 | 
 |  | 
 | // Evaluates to the number of arguments after expansion. | 
 | // | 
 | //   #define PAIR x, y | 
 | // | 
 | //   GMOCK_PP_NARG() => 1 | 
 | //   GMOCK_PP_NARG(x) => 1 | 
 | //   GMOCK_PP_NARG(x, y) => 2 | 
 | //   GMOCK_PP_NARG(PAIR) => 2 | 
 | // | 
 | // Requires: the number of arguments after expansion is at most 15. | 
 | #define GMOCK_PP_NARG(...) \ | 
 |   GMOCK_PP_INTERNAL_16TH(  \ | 
 |       (__VA_ARGS__, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)) | 
 |  | 
 | // Returns 1 if the expansion of arguments has an unprotected comma. Otherwise | 
 | // returns 0. Requires no more than 15 unprotected commas. | 
 | #define GMOCK_PP_HAS_COMMA(...) \ | 
 |   GMOCK_PP_INTERNAL_16TH(       \ | 
 |       (__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)) | 
 |  | 
 | // Returns the first argument. | 
 | #define GMOCK_PP_HEAD(...) GMOCK_PP_INTERNAL_HEAD((__VA_ARGS__, unusedArg)) | 
 |  | 
 | // Returns the tail. A variadic list of all arguments minus the first. Requires | 
 | // at least one argument. | 
 | #define GMOCK_PP_TAIL(...) GMOCK_PP_INTERNAL_TAIL((__VA_ARGS__)) | 
 |  | 
 | // Calls CAT(_Macro, NARG(__VA_ARGS__))(__VA_ARGS__) | 
 | #define GMOCK_PP_VARIADIC_CALL(_Macro, ...) \ | 
 |   GMOCK_PP_IDENTITY(                        \ | 
 |       GMOCK_PP_CAT(_Macro, GMOCK_PP_NARG(__VA_ARGS__))(__VA_ARGS__)) | 
 |  | 
 | // If the arguments after expansion have no tokens, evaluates to `1`. Otherwise | 
 | // evaluates to `0`. | 
 | // | 
 | // Requires: * the number of arguments after expansion is at most 15. | 
 | //           * If the argument is a macro, it must be able to be called with one | 
 | //             argument. | 
 | // | 
 | // Implementation details: | 
 | // | 
 | // There is one case when it generates a compile error: if the argument is macro | 
 | // that cannot be called with one argument. | 
 | // | 
 | //   #define M(a, b)  // it doesn't matter what it expands to | 
 | // | 
 | //   // Expected: expands to `0`. | 
 | //   // Actual: compile error. | 
 | //   GMOCK_PP_IS_EMPTY(M) | 
 | // | 
 | // There are 4 cases tested: | 
 | // | 
 | // * __VA_ARGS__ possible expansion has no unparen'd commas. Expected 0. | 
 | // * __VA_ARGS__ possible expansion is not enclosed in parenthesis. Expected 0. | 
 | // * __VA_ARGS__ possible expansion is not a macro that ()-evaluates to a comma. | 
 | //   Expected 0 | 
 | // * __VA_ARGS__ is empty, or has unparen'd commas, or is enclosed in | 
 | //   parenthesis, or is a macro that ()-evaluates to comma. Expected 1. | 
 | // | 
 | // We trigger detection on '0001', i.e. on empty. | 
 | #define GMOCK_PP_IS_EMPTY(...)                                               \ | 
 |   GMOCK_PP_INTERNAL_IS_EMPTY(GMOCK_PP_HAS_COMMA(__VA_ARGS__),                \ | 
 |                              GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__), \ | 
 |                              GMOCK_PP_HAS_COMMA(__VA_ARGS__()),              \ | 
 |                              GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__())) | 
 |  | 
 | // Evaluates to _Then if _Cond is 1 and _Else if _Cond is 0. | 
 | #define GMOCK_PP_IF(_Cond, _Then, _Else) \ | 
 |   GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IF_, _Cond)(_Then, _Else) | 
 |  | 
 | // Similar to GMOCK_PP_IF but takes _Then and _Else in parentheses. | 
 | // | 
 | // GMOCK_PP_GENERIC_IF(1, (a, b, c), (d, e, f)) => a, b, c | 
 | // GMOCK_PP_GENERIC_IF(0, (a, b, c), (d, e, f)) => d, e, f | 
 | // | 
 | #define GMOCK_PP_GENERIC_IF(_Cond, _Then, _Else) \ | 
 |   GMOCK_PP_REMOVE_PARENS(GMOCK_PP_IF(_Cond, _Then, _Else)) | 
 |  | 
 | // Evaluates to the number of arguments after expansion. Identifies 'empty' as | 
 | // 0. | 
 | // | 
 | //   #define PAIR x, y | 
 | // | 
 | //   GMOCK_PP_NARG0() => 0 | 
 | //   GMOCK_PP_NARG0(x) => 1 | 
 | //   GMOCK_PP_NARG0(x, y) => 2 | 
 | //   GMOCK_PP_NARG0(PAIR) => 2 | 
 | // | 
 | // Requires: * the number of arguments after expansion is at most 15. | 
 | //           * If the argument is a macro, it must be able to be called with one | 
 | //             argument. | 
 | #define GMOCK_PP_NARG0(...) \ | 
 |   GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(__VA_ARGS__), 0, GMOCK_PP_NARG(__VA_ARGS__)) | 
 |  | 
 | // Expands to 1 if the first argument starts with something in parentheses, | 
 | // otherwise to 0. | 
 | #define GMOCK_PP_IS_BEGIN_PARENS(...)                              \ | 
 |   GMOCK_PP_HEAD(GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_, \ | 
 |                              GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C __VA_ARGS__)) | 
 |  | 
 | // Expands to 1 is there is only one argument and it is enclosed in parentheses. | 
 | #define GMOCK_PP_IS_ENCLOSED_PARENS(...)             \ | 
 |   GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(__VA_ARGS__), \ | 
 |               GMOCK_PP_IS_EMPTY(GMOCK_PP_EMPTY __VA_ARGS__), 0) | 
 |  | 
 | // Remove the parens, requires GMOCK_PP_IS_ENCLOSED_PARENS(args) => 1. | 
 | #define GMOCK_PP_REMOVE_PARENS(...) GMOCK_PP_INTERNAL_REMOVE_PARENS __VA_ARGS__ | 
 |  | 
 | // Expands to _Macro(0, _Data, e1) _Macro(1, _Data, e2) ... _Macro(K -1, _Data, | 
 | // eK) as many of GMOCK_INTERNAL_NARG0 _Tuple. | 
 | // Requires: * |_Macro| can be called with 3 arguments. | 
 | //           * |_Tuple| expansion has no more than 15 elements. | 
 | #define GMOCK_PP_FOR_EACH(_Macro, _Data, _Tuple)                        \ | 
 |   GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, GMOCK_PP_NARG0 _Tuple) \ | 
 |   (0, _Macro, _Data, _Tuple) | 
 |  | 
 | // Expands to _Macro(0, _Data, ) _Macro(1, _Data, ) ... _Macro(K - 1, _Data, ) | 
 | // Empty if _K = 0. | 
 | // Requires: * |_Macro| can be called with 3 arguments. | 
 | //           * |_K| literal between 0 and 15 | 
 | #define GMOCK_PP_REPEAT(_Macro, _Data, _N)           \ | 
 |   GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, _N) \ | 
 |   (0, _Macro, _Data, GMOCK_PP_INTENRAL_EMPTY_TUPLE) | 
 |  | 
 | // Increments the argument, requires the argument to be between 0 and 15. | 
 | #define GMOCK_PP_INC(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_INC_, _i) | 
 |  | 
 | // Returns comma if _i != 0. Requires _i to be between 0 and 15. | 
 | #define GMOCK_PP_COMMA_IF(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_COMMA_IF_, _i) | 
 |  | 
 | // Internal details follow. Do not use any of these symbols outside of this | 
 | // file or we will break your code. | 
 | #define GMOCK_PP_INTENRAL_EMPTY_TUPLE (, , , , , , , , , , , , , , , ) | 
 | #define GMOCK_PP_INTERNAL_CAT(_1, _2) _1##_2 | 
 | #define GMOCK_PP_INTERNAL_STRINGIZE(...) #__VA_ARGS__ | 
 | #define GMOCK_PP_INTERNAL_CAT_5(_1, _2, _3, _4, _5) _1##_2##_3##_4##_5 | 
 | #define GMOCK_PP_INTERNAL_IS_EMPTY(_1, _2, _3, _4)                             \ | 
 |   GMOCK_PP_HAS_COMMA(GMOCK_PP_INTERNAL_CAT_5(GMOCK_PP_INTERNAL_IS_EMPTY_CASE_, \ | 
 |                                              _1, _2, _3, _4)) | 
 | #define GMOCK_PP_INTERNAL_IS_EMPTY_CASE_0001 , | 
 | #define GMOCK_PP_INTERNAL_IF_1(_Then, _Else) _Then | 
 | #define GMOCK_PP_INTERNAL_IF_0(_Then, _Else) _Else | 
 |  | 
 | // Because of MSVC treating a token with a comma in it as a single token when | 
 | // passed to another macro, we need to force it to evaluate it as multiple | 
 | // tokens. We do that by using a "IDENTITY(MACRO PARENTHESIZED_ARGS)" macro. We | 
 | // define one per possible macro that relies on this behavior. Note "_Args" must | 
 | // be parenthesized. | 
 | #define GMOCK_PP_INTERNAL_INTERNAL_16TH(_1, _2, _3, _4, _5, _6, _7, _8, _9, \ | 
 |                                         _10, _11, _12, _13, _14, _15, _16,  \ | 
 |                                         ...)                                \ | 
 |   _16 | 
 | #define GMOCK_PP_INTERNAL_16TH(_Args) \ | 
 |   GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_16TH _Args) | 
 | #define GMOCK_PP_INTERNAL_INTERNAL_HEAD(_1, ...) _1 | 
 | #define GMOCK_PP_INTERNAL_HEAD(_Args) \ | 
 |   GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_HEAD _Args) | 
 | #define GMOCK_PP_INTERNAL_INTERNAL_TAIL(_1, ...) __VA_ARGS__ | 
 | #define GMOCK_PP_INTERNAL_TAIL(_Args) \ | 
 |   GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_TAIL _Args) | 
 |  | 
 | #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C(...) 1 _ | 
 | #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_1 1, | 
 | #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C \ | 
 |   0, | 
 | #define GMOCK_PP_INTERNAL_REMOVE_PARENS(...) __VA_ARGS__ | 
 | #define GMOCK_PP_INTERNAL_INC_0 1 | 
 | #define GMOCK_PP_INTERNAL_INC_1 2 | 
 | #define GMOCK_PP_INTERNAL_INC_2 3 | 
 | #define GMOCK_PP_INTERNAL_INC_3 4 | 
 | #define GMOCK_PP_INTERNAL_INC_4 5 | 
 | #define GMOCK_PP_INTERNAL_INC_5 6 | 
 | #define GMOCK_PP_INTERNAL_INC_6 7 | 
 | #define GMOCK_PP_INTERNAL_INC_7 8 | 
 | #define GMOCK_PP_INTERNAL_INC_8 9 | 
 | #define GMOCK_PP_INTERNAL_INC_9 10 | 
 | #define GMOCK_PP_INTERNAL_INC_10 11 | 
 | #define GMOCK_PP_INTERNAL_INC_11 12 | 
 | #define GMOCK_PP_INTERNAL_INC_12 13 | 
 | #define GMOCK_PP_INTERNAL_INC_13 14 | 
 | #define GMOCK_PP_INTERNAL_INC_14 15 | 
 | #define GMOCK_PP_INTERNAL_INC_15 16 | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_0 | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_1 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_2 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_3 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_4 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_5 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_6 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_7 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_8 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_9 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_10 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_11 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_12 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_13 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_14 , | 
 | #define GMOCK_PP_INTERNAL_COMMA_IF_15 , | 
 | #define GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, _element) \ | 
 |   _Macro(_i, _Data, _element) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_0(_i, _Macro, _Data, _Tuple) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(_i, _Macro, _Data, _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(_i, _Macro, _Data, _Tuple)    \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(GMOCK_PP_INC(_i), _Macro, _Data,    \ | 
 |                                     (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(_i, _Macro, _Data, _Tuple)    \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(GMOCK_PP_INC(_i), _Macro, _Data,    \ | 
 |                                     (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(_i, _Macro, _Data, _Tuple)    \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(GMOCK_PP_INC(_i), _Macro, _Data,    \ | 
 |                                     (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(_i, _Macro, _Data, _Tuple)    \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(GMOCK_PP_INC(_i), _Macro, _Data,    \ | 
 |                                     (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(_i, _Macro, _Data, _Tuple)    \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(GMOCK_PP_INC(_i), _Macro, _Data,    \ | 
 |                                     (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(_i, _Macro, _Data, _Tuple)    \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(GMOCK_PP_INC(_i), _Macro, _Data,    \ | 
 |                                     (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(_i, _Macro, _Data, _Tuple)    \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(GMOCK_PP_INC(_i), _Macro, _Data,    \ | 
 |                                     (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(_i, _Macro, _Data, _Tuple)    \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(GMOCK_PP_INC(_i), _Macro, _Data,    \ | 
 |                                     (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(_i, _Macro, _Data, _Tuple)   \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(GMOCK_PP_INC(_i), _Macro, _Data,    \ | 
 |                                     (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(_i, _Macro, _Data, _Tuple)   \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(GMOCK_PP_INC(_i), _Macro, _Data,   \ | 
 |                                      (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(_i, _Macro, _Data, _Tuple)   \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(GMOCK_PP_INC(_i), _Macro, _Data,   \ | 
 |                                      (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(_i, _Macro, _Data, _Tuple)   \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(GMOCK_PP_INC(_i), _Macro, _Data,   \ | 
 |                                      (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(_i, _Macro, _Data, _Tuple)   \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(GMOCK_PP_INC(_i), _Macro, _Data,   \ | 
 |                                      (GMOCK_PP_TAIL _Tuple)) | 
 | #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_15(_i, _Macro, _Data, _Tuple)   \ | 
 |   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | 
 |   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(GMOCK_PP_INC(_i), _Macro, _Data,   \ | 
 |                                      (GMOCK_PP_TAIL _Tuple)) | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ | 
 |  | 
 | #ifdef _MSC_VER | 
 | # pragma warning(push) | 
 | # pragma warning(disable:4100) | 
 | #endif | 
 |  | 
 | namespace testing { | 
 |  | 
 | // To implement an action Foo, define: | 
 | //   1. a class FooAction that implements the ActionInterface interface, and | 
 | //   2. a factory function that creates an Action object from a | 
 | //      const FooAction*. | 
 | // | 
 | // The two-level delegation design follows that of Matcher, providing | 
 | // consistency for extension developers.  It also eases ownership | 
 | // management as Action objects can now be copied like plain values. | 
 |  | 
 | namespace internal { | 
 |  | 
 | // BuiltInDefaultValueGetter<T, true>::Get() returns a | 
 | // default-constructed T value.  BuiltInDefaultValueGetter<T, | 
 | // false>::Get() crashes with an error. | 
 | // | 
 | // This primary template is used when kDefaultConstructible is true. | 
 | template <typename T, bool kDefaultConstructible> | 
 | struct BuiltInDefaultValueGetter { | 
 |   static T Get() { return T(); } | 
 | }; | 
 | template <typename T> | 
 | struct BuiltInDefaultValueGetter<T, false> { | 
 |   static T Get() { | 
 |     Assert(false, __FILE__, __LINE__, | 
 |            "Default action undefined for the function return type."); | 
 |     return internal::Invalid<T>(); | 
 |     // The above statement will never be reached, but is required in | 
 |     // order for this function to compile. | 
 |   } | 
 | }; | 
 |  | 
 | // BuiltInDefaultValue<T>::Get() returns the "built-in" default value | 
 | // for type T, which is NULL when T is a raw pointer type, 0 when T is | 
 | // a numeric type, false when T is bool, or "" when T is string or | 
 | // std::string.  In addition, in C++11 and above, it turns a | 
 | // default-constructed T value if T is default constructible.  For any | 
 | // other type T, the built-in default T value is undefined, and the | 
 | // function will abort the process. | 
 | template <typename T> | 
 | class BuiltInDefaultValue { | 
 |  public: | 
 |   // This function returns true if and only if type T has a built-in default | 
 |   // value. | 
 |   static bool Exists() { | 
 |     return ::std::is_default_constructible<T>::value; | 
 |   } | 
 |  | 
 |   static T Get() { | 
 |     return BuiltInDefaultValueGetter< | 
 |         T, ::std::is_default_constructible<T>::value>::Get(); | 
 |   } | 
 | }; | 
 |  | 
 | // This partial specialization says that we use the same built-in | 
 | // default value for T and const T. | 
 | template <typename T> | 
 | class BuiltInDefaultValue<const T> { | 
 |  public: | 
 |   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } | 
 |   static T Get() { return BuiltInDefaultValue<T>::Get(); } | 
 | }; | 
 |  | 
 | // This partial specialization defines the default values for pointer | 
 | // types. | 
 | template <typename T> | 
 | class BuiltInDefaultValue<T*> { | 
 |  public: | 
 |   static bool Exists() { return true; } | 
 |   static T* Get() { return nullptr; } | 
 | }; | 
 |  | 
 | // The following specializations define the default values for | 
 | // specific types we care about. | 
 | #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ | 
 |   template <> \ | 
 |   class BuiltInDefaultValue<type> { \ | 
 |    public: \ | 
 |     static bool Exists() { return true; } \ | 
 |     static type Get() { return value; } \ | 
 |   } | 
 |  | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); | 
 |  | 
 | // There's no need for a default action for signed wchar_t, as that | 
 | // type is the same as wchar_t for gcc, and invalid for MSVC. | 
 | // | 
 | // There's also no need for a default action for unsigned wchar_t, as | 
 | // that type is the same as unsigned int for gcc, and invalid for | 
 | // MSVC. | 
 | #if GMOCK_WCHAR_T_IS_NATIVE_ | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT | 
 | #endif | 
 |  | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0);  // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0);  // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); | 
 |  | 
 | #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ | 
 |  | 
 | // Simple two-arg form of std::disjunction. | 
 | template <typename P, typename Q> | 
 | using disjunction = typename ::std::conditional<P::value, P, Q>::type; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // When an unexpected function call is encountered, Google Mock will | 
 | // let it return a default value if the user has specified one for its | 
 | // return type, or if the return type has a built-in default value; | 
 | // otherwise Google Mock won't know what value to return and will have | 
 | // to abort the process. | 
 | // | 
 | // The DefaultValue<T> class allows a user to specify the | 
 | // default value for a type T that is both copyable and publicly | 
 | // destructible (i.e. anything that can be used as a function return | 
 | // type).  The usage is: | 
 | // | 
 | //   // Sets the default value for type T to be foo. | 
 | //   DefaultValue<T>::Set(foo); | 
 | template <typename T> | 
 | class DefaultValue { | 
 |  public: | 
 |   // Sets the default value for type T; requires T to be | 
 |   // copy-constructable and have a public destructor. | 
 |   static void Set(T x) { | 
 |     delete producer_; | 
 |     producer_ = new FixedValueProducer(x); | 
 |   } | 
 |  | 
 |   // Provides a factory function to be called to generate the default value. | 
 |   // This method can be used even if T is only move-constructible, but it is not | 
 |   // limited to that case. | 
 |   typedef T (*FactoryFunction)(); | 
 |   static void SetFactory(FactoryFunction factory) { | 
 |     delete producer_; | 
 |     producer_ = new FactoryValueProducer(factory); | 
 |   } | 
 |  | 
 |   // Unsets the default value for type T. | 
 |   static void Clear() { | 
 |     delete producer_; | 
 |     producer_ = nullptr; | 
 |   } | 
 |  | 
 |   // Returns true if and only if the user has set the default value for type T. | 
 |   static bool IsSet() { return producer_ != nullptr; } | 
 |  | 
 |   // Returns true if T has a default return value set by the user or there | 
 |   // exists a built-in default value. | 
 |   static bool Exists() { | 
 |     return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); | 
 |   } | 
 |  | 
 |   // Returns the default value for type T if the user has set one; | 
 |   // otherwise returns the built-in default value. Requires that Exists() | 
 |   // is true, which ensures that the return value is well-defined. | 
 |   static T Get() { | 
 |     return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() | 
 |                                 : producer_->Produce(); | 
 |   } | 
 |  | 
 |  private: | 
 |   class ValueProducer { | 
 |    public: | 
 |     virtual ~ValueProducer() {} | 
 |     virtual T Produce() = 0; | 
 |   }; | 
 |  | 
 |   class FixedValueProducer : public ValueProducer { | 
 |    public: | 
 |     explicit FixedValueProducer(T value) : value_(value) {} | 
 |     T Produce() override { return value_; } | 
 |  | 
 |    private: | 
 |     const T value_; | 
 |     GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); | 
 |   }; | 
 |  | 
 |   class FactoryValueProducer : public ValueProducer { | 
 |    public: | 
 |     explicit FactoryValueProducer(FactoryFunction factory) | 
 |         : factory_(factory) {} | 
 |     T Produce() override { return factory_(); } | 
 |  | 
 |    private: | 
 |     const FactoryFunction factory_; | 
 |     GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); | 
 |   }; | 
 |  | 
 |   static ValueProducer* producer_; | 
 | }; | 
 |  | 
 | // This partial specialization allows a user to set default values for | 
 | // reference types. | 
 | template <typename T> | 
 | class DefaultValue<T&> { | 
 |  public: | 
 |   // Sets the default value for type T&. | 
 |   static void Set(T& x) {  // NOLINT | 
 |     address_ = &x; | 
 |   } | 
 |  | 
 |   // Unsets the default value for type T&. | 
 |   static void Clear() { address_ = nullptr; } | 
 |  | 
 |   // Returns true if and only if the user has set the default value for type T&. | 
 |   static bool IsSet() { return address_ != nullptr; } | 
 |  | 
 |   // Returns true if T has a default return value set by the user or there | 
 |   // exists a built-in default value. | 
 |   static bool Exists() { | 
 |     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); | 
 |   } | 
 |  | 
 |   // Returns the default value for type T& if the user has set one; | 
 |   // otherwise returns the built-in default value if there is one; | 
 |   // otherwise aborts the process. | 
 |   static T& Get() { | 
 |     return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() | 
 |                                : *address_; | 
 |   } | 
 |  | 
 |  private: | 
 |   static T* address_; | 
 | }; | 
 |  | 
 | // This specialization allows DefaultValue<void>::Get() to | 
 | // compile. | 
 | template <> | 
 | class DefaultValue<void> { | 
 |  public: | 
 |   static bool Exists() { return true; } | 
 |   static void Get() {} | 
 | }; | 
 |  | 
 | // Points to the user-set default value for type T. | 
 | template <typename T> | 
 | typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; | 
 |  | 
 | // Points to the user-set default value for type T&. | 
 | template <typename T> | 
 | T* DefaultValue<T&>::address_ = nullptr; | 
 |  | 
 | // Implement this interface to define an action for function type F. | 
 | template <typename F> | 
 | class ActionInterface { | 
 |  public: | 
 |   typedef typename internal::Function<F>::Result Result; | 
 |   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |   ActionInterface() {} | 
 |   virtual ~ActionInterface() {} | 
 |  | 
 |   // Performs the action.  This method is not const, as in general an | 
 |   // action can have side effects and be stateful.  For example, a | 
 |   // get-the-next-element-from-the-collection action will need to | 
 |   // remember the current element. | 
 |   virtual Result Perform(const ArgumentTuple& args) = 0; | 
 |  | 
 |  private: | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); | 
 | }; | 
 |  | 
 | // An Action<F> is a copyable and IMMUTABLE (except by assignment) | 
 | // object that represents an action to be taken when a mock function | 
 | // of type F is called.  The implementation of Action<T> is just a | 
 | // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! | 
 | // You can view an object implementing ActionInterface<F> as a | 
 | // concrete action (including its current state), and an Action<F> | 
 | // object as a handle to it. | 
 | template <typename F> | 
 | class Action { | 
 |   // Adapter class to allow constructing Action from a legacy ActionInterface. | 
 |   // New code should create Actions from functors instead. | 
 |   struct ActionAdapter { | 
 |     // Adapter must be copyable to satisfy std::function requirements. | 
 |     ::std::shared_ptr<ActionInterface<F>> impl_; | 
 |  | 
 |     template <typename... Args> | 
 |     typename internal::Function<F>::Result operator()(Args&&... args) { | 
 |       return impl_->Perform( | 
 |           ::std::forward_as_tuple(::std::forward<Args>(args)...)); | 
 |     } | 
 |   }; | 
 |  | 
 |   template <typename G> | 
 |   using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; | 
 |  | 
 |  public: | 
 |   typedef typename internal::Function<F>::Result Result; | 
 |   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |   // Constructs a null Action.  Needed for storing Action objects in | 
 |   // STL containers. | 
 |   Action() {} | 
 |  | 
 |   // Construct an Action from a specified callable. | 
 |   // This cannot take std::function directly, because then Action would not be | 
 |   // directly constructible from lambda (it would require two conversions). | 
 |   template < | 
 |       typename G, | 
 |       typename = typename std::enable_if<internal::disjunction< | 
 |           IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, | 
 |                                                         G>>::value>::type> | 
 |   Action(G&& fun) {  // NOLINT | 
 |     Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); | 
 |   } | 
 |  | 
 |   // Constructs an Action from its implementation. | 
 |   explicit Action(ActionInterface<F>* impl) | 
 |       : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} | 
 |  | 
 |   // This constructor allows us to turn an Action<Func> object into an | 
 |   // Action<F>, as long as F's arguments can be implicitly converted | 
 |   // to Func's and Func's return type can be implicitly converted to F's. | 
 |   template <typename Func> | 
 |   explicit Action(const Action<Func>& action) : fun_(action.fun_) {} | 
 |  | 
 |   // Returns true if and only if this is the DoDefault() action. | 
 |   bool IsDoDefault() const { return fun_ == nullptr; } | 
 |  | 
 |   // Performs the action.  Note that this method is const even though | 
 |   // the corresponding method in ActionInterface is not.  The reason | 
 |   // is that a const Action<F> means that it cannot be re-bound to | 
 |   // another concrete action, not that the concrete action it binds to | 
 |   // cannot change state.  (Think of the difference between a const | 
 |   // pointer and a pointer to const.) | 
 |   Result Perform(ArgumentTuple args) const { | 
 |     if (IsDoDefault()) { | 
 |       internal::IllegalDoDefault(__FILE__, __LINE__); | 
 |     } | 
 |     return internal::Apply(fun_, ::std::move(args)); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename G> | 
 |   friend class Action; | 
 |  | 
 |   template <typename G> | 
 |   void Init(G&& g, ::std::true_type) { | 
 |     fun_ = ::std::forward<G>(g); | 
 |   } | 
 |  | 
 |   template <typename G> | 
 |   void Init(G&& g, ::std::false_type) { | 
 |     fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; | 
 |   } | 
 |  | 
 |   template <typename FunctionImpl> | 
 |   struct IgnoreArgs { | 
 |     template <typename... Args> | 
 |     Result operator()(const Args&...) const { | 
 |       return function_impl(); | 
 |     } | 
 |  | 
 |     FunctionImpl function_impl; | 
 |   }; | 
 |  | 
 |   // fun_ is an empty function if and only if this is the DoDefault() action. | 
 |   ::std::function<F> fun_; | 
 | }; | 
 |  | 
 | // The PolymorphicAction class template makes it easy to implement a | 
 | // polymorphic action (i.e. an action that can be used in mock | 
 | // functions of than one type, e.g. Return()). | 
 | // | 
 | // To define a polymorphic action, a user first provides a COPYABLE | 
 | // implementation class that has a Perform() method template: | 
 | // | 
 | //   class FooAction { | 
 | //    public: | 
 | //     template <typename Result, typename ArgumentTuple> | 
 | //     Result Perform(const ArgumentTuple& args) const { | 
 | //       // Processes the arguments and returns a result, using | 
 | //       // std::get<N>(args) to get the N-th (0-based) argument in the tuple. | 
 | //     } | 
 | //     ... | 
 | //   }; | 
 | // | 
 | // Then the user creates the polymorphic action using | 
 | // MakePolymorphicAction(object) where object has type FooAction.  See | 
 | // the definition of Return(void) and SetArgumentPointee<N>(value) for | 
 | // complete examples. | 
 | template <typename Impl> | 
 | class PolymorphicAction { | 
 |  public: | 
 |   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} | 
 |  | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     return Action<F>(new MonomorphicImpl<F>(impl_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename F> | 
 |   class MonomorphicImpl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename internal::Function<F>::Result Result; | 
 |     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} | 
 |  | 
 |     Result Perform(const ArgumentTuple& args) override { | 
 |       return impl_.template Perform<Result>(args); | 
 |     } | 
 |  | 
 |    private: | 
 |     Impl impl_; | 
 |   }; | 
 |  | 
 |   Impl impl_; | 
 | }; | 
 |  | 
 | // Creates an Action from its implementation and returns it.  The | 
 | // created Action object owns the implementation. | 
 | template <typename F> | 
 | Action<F> MakeAction(ActionInterface<F>* impl) { | 
 |   return Action<F>(impl); | 
 | } | 
 |  | 
 | // Creates a polymorphic action from its implementation.  This is | 
 | // easier to use than the PolymorphicAction<Impl> constructor as it | 
 | // doesn't require you to explicitly write the template argument, e.g. | 
 | // | 
 | //   MakePolymorphicAction(foo); | 
 | // vs | 
 | //   PolymorphicAction<TypeOfFoo>(foo); | 
 | template <typename Impl> | 
 | inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { | 
 |   return PolymorphicAction<Impl>(impl); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | // Helper struct to specialize ReturnAction to execute a move instead of a copy | 
 | // on return. Useful for move-only types, but could be used on any type. | 
 | template <typename T> | 
 | struct ByMoveWrapper { | 
 |   explicit ByMoveWrapper(T value) : payload(std::move(value)) {} | 
 |   T payload; | 
 | }; | 
 |  | 
 | // Implements the polymorphic Return(x) action, which can be used in | 
 | // any function that returns the type of x, regardless of the argument | 
 | // types. | 
 | // | 
 | // Note: The value passed into Return must be converted into | 
 | // Function<F>::Result when this action is cast to Action<F> rather than | 
 | // when that action is performed. This is important in scenarios like | 
 | // | 
 | // MOCK_METHOD1(Method, T(U)); | 
 | // ... | 
 | // { | 
 | //   Foo foo; | 
 | //   X x(&foo); | 
 | //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); | 
 | // } | 
 | // | 
 | // In the example above the variable x holds reference to foo which leaves | 
 | // scope and gets destroyed.  If copying X just copies a reference to foo, | 
 | // that copy will be left with a hanging reference.  If conversion to T | 
 | // makes a copy of foo, the above code is safe. To support that scenario, we | 
 | // need to make sure that the type conversion happens inside the EXPECT_CALL | 
 | // statement, and conversion of the result of Return to Action<T(U)> is a | 
 | // good place for that. | 
 | // | 
 | // The real life example of the above scenario happens when an invocation | 
 | // of gtl::Container() is passed into Return. | 
 | // | 
 | template <typename R> | 
 | class ReturnAction { | 
 |  public: | 
 |   // Constructs a ReturnAction object from the value to be returned. | 
 |   // 'value' is passed by value instead of by const reference in order | 
 |   // to allow Return("string literal") to compile. | 
 |   explicit ReturnAction(R value) : value_(new R(std::move(value))) {} | 
 |  | 
 |   // This template type conversion operator allows Return(x) to be | 
 |   // used in ANY function that returns x's type. | 
 |   template <typename F> | 
 |   operator Action<F>() const {  // NOLINT | 
 |     // Assert statement belongs here because this is the best place to verify | 
 |     // conditions on F. It produces the clearest error messages | 
 |     // in most compilers. | 
 |     // Impl really belongs in this scope as a local class but can't | 
 |     // because MSVC produces duplicate symbols in different translation units | 
 |     // in this case. Until MS fixes that bug we put Impl into the class scope | 
 |     // and put the typedef both here (for use in assert statement) and | 
 |     // in the Impl class. But both definitions must be the same. | 
 |     typedef typename Function<F>::Result Result; | 
 |     GTEST_COMPILE_ASSERT_( | 
 |         !std::is_reference<Result>::value, | 
 |         use_ReturnRef_instead_of_Return_to_return_a_reference); | 
 |     static_assert(!std::is_void<Result>::value, | 
 |                   "Can't use Return() on an action expected to return `void`."); | 
 |     return Action<F>(new Impl<R, F>(value_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Implements the Return(x) action for a particular function type F. | 
 |   template <typename R_, typename F> | 
 |   class Impl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename Function<F>::Result Result; | 
 |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     // The implicit cast is necessary when Result has more than one | 
 |     // single-argument constructor (e.g. Result is std::vector<int>) and R | 
 |     // has a type conversion operator template.  In that case, value_(value) | 
 |     // won't compile as the compiler doesn't known which constructor of | 
 |     // Result to call.  ImplicitCast_ forces the compiler to convert R to | 
 |     // Result without considering explicit constructors, thus resolving the | 
 |     // ambiguity. value_ is then initialized using its copy constructor. | 
 |     explicit Impl(const std::shared_ptr<R>& value) | 
 |         : value_before_cast_(*value), | 
 |           value_(ImplicitCast_<Result>(value_before_cast_)) {} | 
 |  | 
 |     Result Perform(const ArgumentTuple&) override { return value_; } | 
 |  | 
 |    private: | 
 |     GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value, | 
 |                           Result_cannot_be_a_reference_type); | 
 |     // We save the value before casting just in case it is being cast to a | 
 |     // wrapper type. | 
 |     R value_before_cast_; | 
 |     Result value_; | 
 |  | 
 |     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |   // Partially specialize for ByMoveWrapper. This version of ReturnAction will | 
 |   // move its contents instead. | 
 |   template <typename R_, typename F> | 
 |   class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename Function<F>::Result Result; | 
 |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit Impl(const std::shared_ptr<R>& wrapper) | 
 |         : performed_(false), wrapper_(wrapper) {} | 
 |  | 
 |     Result Perform(const ArgumentTuple&) override { | 
 |       GTEST_CHECK_(!performed_) | 
 |           << "A ByMove() action should only be performed once."; | 
 |       performed_ = true; | 
 |       return std::move(wrapper_->payload); | 
 |     } | 
 |  | 
 |    private: | 
 |     bool performed_; | 
 |     const std::shared_ptr<R> wrapper_; | 
 |   }; | 
 |  | 
 |   const std::shared_ptr<R> value_; | 
 | }; | 
 |  | 
 | // Implements the ReturnNull() action. | 
 | class ReturnNullAction { | 
 |  public: | 
 |   // Allows ReturnNull() to be used in any pointer-returning function. In C++11 | 
 |   // this is enforced by returning nullptr, and in non-C++11 by asserting a | 
 |   // pointer type on compile time. | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   static Result Perform(const ArgumentTuple&) { | 
 |     return nullptr; | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the Return() action. | 
 | class ReturnVoidAction { | 
 |  public: | 
 |   // Allows Return() to be used in any void-returning function. | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   static void Perform(const ArgumentTuple&) { | 
 |     static_assert(std::is_void<Result>::value, "Result should be void."); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the polymorphic ReturnRef(x) action, which can be used | 
 | // in any function that returns a reference to the type of x, | 
 | // regardless of the argument types. | 
 | template <typename T> | 
 | class ReturnRefAction { | 
 |  public: | 
 |   // Constructs a ReturnRefAction object from the reference to be returned. | 
 |   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT | 
 |  | 
 |   // This template type conversion operator allows ReturnRef(x) to be | 
 |   // used in ANY function that returns a reference to x's type. | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     typedef typename Function<F>::Result Result; | 
 |     // Asserts that the function return type is a reference.  This | 
 |     // catches the user error of using ReturnRef(x) when Return(x) | 
 |     // should be used, and generates some helpful error message. | 
 |     GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value, | 
 |                           use_Return_instead_of_ReturnRef_to_return_a_value); | 
 |     return Action<F>(new Impl<F>(ref_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Implements the ReturnRef(x) action for a particular function type F. | 
 |   template <typename F> | 
 |   class Impl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename Function<F>::Result Result; | 
 |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT | 
 |  | 
 |     Result Perform(const ArgumentTuple&) override { return ref_; } | 
 |  | 
 |    private: | 
 |     T& ref_; | 
 |   }; | 
 |  | 
 |   T& ref_; | 
 | }; | 
 |  | 
 | // Implements the polymorphic ReturnRefOfCopy(x) action, which can be | 
 | // used in any function that returns a reference to the type of x, | 
 | // regardless of the argument types. | 
 | template <typename T> | 
 | class ReturnRefOfCopyAction { | 
 |  public: | 
 |   // Constructs a ReturnRefOfCopyAction object from the reference to | 
 |   // be returned. | 
 |   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT | 
 |  | 
 |   // This template type conversion operator allows ReturnRefOfCopy(x) to be | 
 |   // used in ANY function that returns a reference to x's type. | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     typedef typename Function<F>::Result Result; | 
 |     // Asserts that the function return type is a reference.  This | 
 |     // catches the user error of using ReturnRefOfCopy(x) when Return(x) | 
 |     // should be used, and generates some helpful error message. | 
 |     GTEST_COMPILE_ASSERT_( | 
 |         std::is_reference<Result>::value, | 
 |         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); | 
 |     return Action<F>(new Impl<F>(value_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Implements the ReturnRefOfCopy(x) action for a particular function type F. | 
 |   template <typename F> | 
 |   class Impl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename Function<F>::Result Result; | 
 |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit Impl(const T& value) : value_(value) {}  // NOLINT | 
 |  | 
 |     Result Perform(const ArgumentTuple&) override { return value_; } | 
 |  | 
 |    private: | 
 |     T value_; | 
 |   }; | 
 |  | 
 |   const T value_; | 
 | }; | 
 |  | 
 | // Implements the polymorphic ReturnRoundRobin(v) action, which can be | 
 | // used in any function that returns the element_type of v. | 
 | template <typename T> | 
 | class ReturnRoundRobinAction { | 
 |  public: | 
 |   explicit ReturnRoundRobinAction(std::vector<T> values) { | 
 |     GTEST_CHECK_(!values.empty()) | 
 |         << "ReturnRoundRobin requires at least one element."; | 
 |     state_->values = std::move(values); | 
 |   } | 
 |  | 
 |   template <typename... Args> | 
 |   T operator()(Args&&...) const { | 
 |      return state_->Next(); | 
 |   } | 
 |  | 
 |  private: | 
 |   struct State { | 
 |     T Next() { | 
 |       T ret_val = values[i++]; | 
 |       if (i == values.size()) i = 0; | 
 |       return ret_val; | 
 |     } | 
 |  | 
 |     std::vector<T> values; | 
 |     size_t i = 0; | 
 |   }; | 
 |   std::shared_ptr<State> state_ = std::make_shared<State>(); | 
 | }; | 
 |  | 
 | // Implements the polymorphic DoDefault() action. | 
 | class DoDefaultAction { | 
 |  public: | 
 |   // This template type conversion operator allows DoDefault() to be | 
 |   // used in any function. | 
 |   template <typename F> | 
 |   operator Action<F>() const { return Action<F>(); }  // NOLINT | 
 | }; | 
 |  | 
 | // Implements the Assign action to set a given pointer referent to a | 
 | // particular value. | 
 | template <typename T1, typename T2> | 
 | class AssignAction { | 
 |  public: | 
 |   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} | 
 |  | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   void Perform(const ArgumentTuple& /* args */) const { | 
 |     *ptr_ = value_; | 
 |   } | 
 |  | 
 |  private: | 
 |   T1* const ptr_; | 
 |   const T2 value_; | 
 | }; | 
 |  | 
 | #if !GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Implements the SetErrnoAndReturn action to simulate return from | 
 | // various system calls and libc functions. | 
 | template <typename T> | 
 | class SetErrnoAndReturnAction { | 
 |  public: | 
 |   SetErrnoAndReturnAction(int errno_value, T result) | 
 |       : errno_(errno_value), | 
 |         result_(result) {} | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   Result Perform(const ArgumentTuple& /* args */) const { | 
 |     errno = errno_; | 
 |     return result_; | 
 |   } | 
 |  | 
 |  private: | 
 |   const int errno_; | 
 |   const T result_; | 
 | }; | 
 |  | 
 | #endif  // !GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Implements the SetArgumentPointee<N>(x) action for any function | 
 | // whose N-th argument (0-based) is a pointer to x's type. | 
 | template <size_t N, typename A, typename = void> | 
 | struct SetArgumentPointeeAction { | 
 |   A value; | 
 |  | 
 |   template <typename... Args> | 
 |   void operator()(const Args&... args) const { | 
 |     *::std::get<N>(std::tie(args...)) = value; | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the Invoke(object_ptr, &Class::Method) action. | 
 | template <class Class, typename MethodPtr> | 
 | struct InvokeMethodAction { | 
 |   Class* const obj_ptr; | 
 |   const MethodPtr method_ptr; | 
 |  | 
 |   template <typename... Args> | 
 |   auto operator()(Args&&... args) const | 
 |       -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { | 
 |     return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the InvokeWithoutArgs(f) action.  The template argument | 
 | // FunctionImpl is the implementation type of f, which can be either a | 
 | // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an | 
 | // Action<F> as long as f's type is compatible with F. | 
 | template <typename FunctionImpl> | 
 | struct InvokeWithoutArgsAction { | 
 |   FunctionImpl function_impl; | 
 |  | 
 |   // Allows InvokeWithoutArgs(f) to be used as any action whose type is | 
 |   // compatible with f. | 
 |   template <typename... Args> | 
 |   auto operator()(const Args&...) -> decltype(function_impl()) { | 
 |     return function_impl(); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. | 
 | template <class Class, typename MethodPtr> | 
 | struct InvokeMethodWithoutArgsAction { | 
 |   Class* const obj_ptr; | 
 |   const MethodPtr method_ptr; | 
 |  | 
 |   using ReturnType = | 
 |       decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); | 
 |  | 
 |   template <typename... Args> | 
 |   ReturnType operator()(const Args&...) const { | 
 |     return (obj_ptr->*method_ptr)(); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the IgnoreResult(action) action. | 
 | template <typename A> | 
 | class IgnoreResultAction { | 
 |  public: | 
 |   explicit IgnoreResultAction(const A& action) : action_(action) {} | 
 |  | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     // Assert statement belongs here because this is the best place to verify | 
 |     // conditions on F. It produces the clearest error messages | 
 |     // in most compilers. | 
 |     // Impl really belongs in this scope as a local class but can't | 
 |     // because MSVC produces duplicate symbols in different translation units | 
 |     // in this case. Until MS fixes that bug we put Impl into the class scope | 
 |     // and put the typedef both here (for use in assert statement) and | 
 |     // in the Impl class. But both definitions must be the same. | 
 |     typedef typename internal::Function<F>::Result Result; | 
 |  | 
 |     // Asserts at compile time that F returns void. | 
 |     static_assert(std::is_void<Result>::value, "Result type should be void."); | 
 |  | 
 |     return Action<F>(new Impl<F>(action_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename F> | 
 |   class Impl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename internal::Function<F>::Result Result; | 
 |     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit Impl(const A& action) : action_(action) {} | 
 |  | 
 |     void Perform(const ArgumentTuple& args) override { | 
 |       // Performs the action and ignores its result. | 
 |       action_.Perform(args); | 
 |     } | 
 |  | 
 |    private: | 
 |     // Type OriginalFunction is the same as F except that its return | 
 |     // type is IgnoredValue. | 
 |     typedef typename internal::Function<F>::MakeResultIgnoredValue | 
 |         OriginalFunction; | 
 |  | 
 |     const Action<OriginalFunction> action_; | 
 |   }; | 
 |  | 
 |   const A action_; | 
 | }; | 
 |  | 
 | template <typename InnerAction, size_t... I> | 
 | struct WithArgsAction { | 
 |   InnerAction action; | 
 |  | 
 |   // The inner action could be anything convertible to Action<X>. | 
 |   // We use the conversion operator to detect the signature of the inner Action. | 
 |   template <typename R, typename... Args> | 
 |   operator Action<R(Args...)>() const {  // NOLINT | 
 |     using TupleType = std::tuple<Args...>; | 
 |     Action<R(typename std::tuple_element<I, TupleType>::type...)> | 
 |         converted(action); | 
 |  | 
 |     return [converted](Args... args) -> R { | 
 |       return converted.Perform(std::forward_as_tuple( | 
 |         std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); | 
 |     }; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename... Actions> | 
 | struct DoAllAction { | 
 |  private: | 
 |   template <typename T> | 
 |   using NonFinalType = | 
 |       typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; | 
 |  | 
 |   template <typename ActionT, size_t... I> | 
 |   std::vector<ActionT> Convert(IndexSequence<I...>) const { | 
 |     return {ActionT(std::get<I>(actions))...}; | 
 |   } | 
 |  | 
 |  public: | 
 |   std::tuple<Actions...> actions; | 
 |  | 
 |   template <typename R, typename... Args> | 
 |   operator Action<R(Args...)>() const {  // NOLINT | 
 |     struct Op { | 
 |       std::vector<Action<void(NonFinalType<Args>...)>> converted; | 
 |       Action<R(Args...)> last; | 
 |       R operator()(Args... args) const { | 
 |         auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...); | 
 |         for (auto& a : converted) { | 
 |           a.Perform(tuple_args); | 
 |         } | 
 |         return last.Perform(std::move(tuple_args)); | 
 |       } | 
 |     }; | 
 |     return Op{Convert<Action<void(NonFinalType<Args>...)>>( | 
 |                   MakeIndexSequence<sizeof...(Actions) - 1>()), | 
 |               std::get<sizeof...(Actions) - 1>(actions)}; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T, typename... Params> | 
 | struct ReturnNewAction { | 
 |   T* operator()() const { | 
 |     return internal::Apply( | 
 |         [](const Params&... unpacked_params) { | 
 |           return new T(unpacked_params...); | 
 |         }, | 
 |         params); | 
 |   } | 
 |   std::tuple<Params...> params; | 
 | }; | 
 |  | 
 | template <size_t k> | 
 | struct ReturnArgAction { | 
 |   template <typename... Args> | 
 |   auto operator()(const Args&... args) const -> | 
 |       typename std::tuple_element<k, std::tuple<Args...>>::type { | 
 |     return std::get<k>(std::tie(args...)); | 
 |   } | 
 | }; | 
 |  | 
 | template <size_t k, typename Ptr> | 
 | struct SaveArgAction { | 
 |   Ptr pointer; | 
 |  | 
 |   template <typename... Args> | 
 |   void operator()(const Args&... args) const { | 
 |     *pointer = std::get<k>(std::tie(args...)); | 
 |   } | 
 | }; | 
 |  | 
 | template <size_t k, typename Ptr> | 
 | struct SaveArgPointeeAction { | 
 |   Ptr pointer; | 
 |  | 
 |   template <typename... Args> | 
 |   void operator()(const Args&... args) const { | 
 |     *pointer = *std::get<k>(std::tie(args...)); | 
 |   } | 
 | }; | 
 |  | 
 | template <size_t k, typename T> | 
 | struct SetArgRefereeAction { | 
 |   T value; | 
 |  | 
 |   template <typename... Args> | 
 |   void operator()(Args&&... args) const { | 
 |     using argk_type = | 
 |         typename ::std::tuple_element<k, std::tuple<Args...>>::type; | 
 |     static_assert(std::is_lvalue_reference<argk_type>::value, | 
 |                   "Argument must be a reference type."); | 
 |     std::get<k>(std::tie(args...)) = value; | 
 |   } | 
 | }; | 
 |  | 
 | template <size_t k, typename I1, typename I2> | 
 | struct SetArrayArgumentAction { | 
 |   I1 first; | 
 |   I2 last; | 
 |  | 
 |   template <typename... Args> | 
 |   void operator()(const Args&... args) const { | 
 |     auto value = std::get<k>(std::tie(args...)); | 
 |     for (auto it = first; it != last; ++it, (void)++value) { | 
 |       *value = *it; | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | template <size_t k> | 
 | struct DeleteArgAction { | 
 |   template <typename... Args> | 
 |   void operator()(const Args&... args) const { | 
 |     delete std::get<k>(std::tie(args...)); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Ptr> | 
 | struct ReturnPointeeAction { | 
 |   Ptr pointer; | 
 |   template <typename... Args> | 
 |   auto operator()(const Args&...) const -> decltype(*pointer) { | 
 |     return *pointer; | 
 |   } | 
 | }; | 
 |  | 
 | #if GTEST_HAS_EXCEPTIONS | 
 | template <typename T> | 
 | struct ThrowAction { | 
 |   T exception; | 
 |   // We use a conversion operator to adapt to any return type. | 
 |   template <typename R, typename... Args> | 
 |   operator Action<R(Args...)>() const {  // NOLINT | 
 |     T copy = exception; | 
 |     return [copy](Args...) -> R { throw copy; }; | 
 |   } | 
 | }; | 
 | #endif  // GTEST_HAS_EXCEPTIONS | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // An Unused object can be implicitly constructed from ANY value. | 
 | // This is handy when defining actions that ignore some or all of the | 
 | // mock function arguments.  For example, given | 
 | // | 
 | //   MOCK_METHOD3(Foo, double(const string& label, double x, double y)); | 
 | //   MOCK_METHOD3(Bar, double(int index, double x, double y)); | 
 | // | 
 | // instead of | 
 | // | 
 | //   double DistanceToOriginWithLabel(const string& label, double x, double y) { | 
 | //     return sqrt(x*x + y*y); | 
 | //   } | 
 | //   double DistanceToOriginWithIndex(int index, double x, double y) { | 
 | //     return sqrt(x*x + y*y); | 
 | //   } | 
 | //   ... | 
 | //   EXPECT_CALL(mock, Foo("abc", _, _)) | 
 | //       .WillOnce(Invoke(DistanceToOriginWithLabel)); | 
 | //   EXPECT_CALL(mock, Bar(5, _, _)) | 
 | //       .WillOnce(Invoke(DistanceToOriginWithIndex)); | 
 | // | 
 | // you could write | 
 | // | 
 | //   // We can declare any uninteresting argument as Unused. | 
 | //   double DistanceToOrigin(Unused, double x, double y) { | 
 | //     return sqrt(x*x + y*y); | 
 | //   } | 
 | //   ... | 
 | //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); | 
 | //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); | 
 | typedef internal::IgnoredValue Unused; | 
 |  | 
 | // Creates an action that does actions a1, a2, ..., sequentially in | 
 | // each invocation. All but the last action will have a readonly view of the | 
 | // arguments. | 
 | template <typename... Action> | 
 | internal::DoAllAction<typename std::decay<Action>::type...> DoAll( | 
 |     Action&&... action) { | 
 |   return {std::forward_as_tuple(std::forward<Action>(action)...)}; | 
 | } | 
 |  | 
 | // WithArg<k>(an_action) creates an action that passes the k-th | 
 | // (0-based) argument of the mock function to an_action and performs | 
 | // it.  It adapts an action accepting one argument to one that accepts | 
 | // multiple arguments.  For convenience, we also provide | 
 | // WithArgs<k>(an_action) (defined below) as a synonym. | 
 | template <size_t k, typename InnerAction> | 
 | internal::WithArgsAction<typename std::decay<InnerAction>::type, k> | 
 | WithArg(InnerAction&& action) { | 
 |   return {std::forward<InnerAction>(action)}; | 
 | } | 
 |  | 
 | // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes | 
 | // the selected arguments of the mock function to an_action and | 
 | // performs it.  It serves as an adaptor between actions with | 
 | // different argument lists. | 
 | template <size_t k, size_t... ks, typename InnerAction> | 
 | internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> | 
 | WithArgs(InnerAction&& action) { | 
 |   return {std::forward<InnerAction>(action)}; | 
 | } | 
 |  | 
 | // WithoutArgs(inner_action) can be used in a mock function with a | 
 | // non-empty argument list to perform inner_action, which takes no | 
 | // argument.  In other words, it adapts an action accepting no | 
 | // argument to one that accepts (and ignores) arguments. | 
 | template <typename InnerAction> | 
 | internal::WithArgsAction<typename std::decay<InnerAction>::type> | 
 | WithoutArgs(InnerAction&& action) { | 
 |   return {std::forward<InnerAction>(action)}; | 
 | } | 
 |  | 
 | // Creates an action that returns 'value'.  'value' is passed by value | 
 | // instead of const reference - otherwise Return("string literal") | 
 | // will trigger a compiler error about using array as initializer. | 
 | template <typename R> | 
 | internal::ReturnAction<R> Return(R value) { | 
 |   return internal::ReturnAction<R>(std::move(value)); | 
 | } | 
 |  | 
 | // Creates an action that returns NULL. | 
 | inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { | 
 |   return MakePolymorphicAction(internal::ReturnNullAction()); | 
 | } | 
 |  | 
 | // Creates an action that returns from a void function. | 
 | inline PolymorphicAction<internal::ReturnVoidAction> Return() { | 
 |   return MakePolymorphicAction(internal::ReturnVoidAction()); | 
 | } | 
 |  | 
 | // Creates an action that returns the reference to a variable. | 
 | template <typename R> | 
 | inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT | 
 |   return internal::ReturnRefAction<R>(x); | 
 | } | 
 |  | 
 | // Prevent using ReturnRef on reference to temporary. | 
 | template <typename R, R* = nullptr> | 
 | internal::ReturnRefAction<R> ReturnRef(R&&) = delete; | 
 |  | 
 | // Creates an action that returns the reference to a copy of the | 
 | // argument.  The copy is created when the action is constructed and | 
 | // lives as long as the action. | 
 | template <typename R> | 
 | inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { | 
 |   return internal::ReturnRefOfCopyAction<R>(x); | 
 | } | 
 |  | 
 | // Modifies the parent action (a Return() action) to perform a move of the | 
 | // argument instead of a copy. | 
 | // Return(ByMove()) actions can only be executed once and will assert this | 
 | // invariant. | 
 | template <typename R> | 
 | internal::ByMoveWrapper<R> ByMove(R x) { | 
 |   return internal::ByMoveWrapper<R>(std::move(x)); | 
 | } | 
 |  | 
 | // Creates an action that returns an element of `vals`. Calling this action will | 
 | // repeatedly return the next value from `vals` until it reaches the end and | 
 | // will restart from the beginning. | 
 | template <typename T> | 
 | internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { | 
 |   return internal::ReturnRoundRobinAction<T>(std::move(vals)); | 
 | } | 
 |  | 
 | // Creates an action that returns an element of `vals`. Calling this action will | 
 | // repeatedly return the next value from `vals` until it reaches the end and | 
 | // will restart from the beginning. | 
 | template <typename T> | 
 | internal::ReturnRoundRobinAction<T> ReturnRoundRobin( | 
 |     std::initializer_list<T> vals) { | 
 |   return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); | 
 | } | 
 |  | 
 | // Creates an action that does the default action for the give mock function. | 
 | inline internal::DoDefaultAction DoDefault() { | 
 |   return internal::DoDefaultAction(); | 
 | } | 
 |  | 
 | // Creates an action that sets the variable pointed by the N-th | 
 | // (0-based) function argument to 'value'. | 
 | template <size_t N, typename T> | 
 | internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { | 
 |   return {std::move(value)}; | 
 | } | 
 |  | 
 | // The following version is DEPRECATED. | 
 | template <size_t N, typename T> | 
 | internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { | 
 |   return {std::move(value)}; | 
 | } | 
 |  | 
 | // Creates an action that sets a pointer referent to a given value. | 
 | template <typename T1, typename T2> | 
 | PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { | 
 |   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); | 
 | } | 
 |  | 
 | #if !GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Creates an action that sets errno and returns the appropriate error. | 
 | template <typename T> | 
 | PolymorphicAction<internal::SetErrnoAndReturnAction<T> > | 
 | SetErrnoAndReturn(int errval, T result) { | 
 |   return MakePolymorphicAction( | 
 |       internal::SetErrnoAndReturnAction<T>(errval, result)); | 
 | } | 
 |  | 
 | #endif  // !GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Various overloads for Invoke(). | 
 |  | 
 | // Legacy function. | 
 | // Actions can now be implicitly constructed from callables. No need to create | 
 | // wrapper objects. | 
 | // This function exists for backwards compatibility. | 
 | template <typename FunctionImpl> | 
 | typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { | 
 |   return std::forward<FunctionImpl>(function_impl); | 
 | } | 
 |  | 
 | // Creates an action that invokes the given method on the given object | 
 | // with the mock function's arguments. | 
 | template <class Class, typename MethodPtr> | 
 | internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, | 
 |                                                       MethodPtr method_ptr) { | 
 |   return {obj_ptr, method_ptr}; | 
 | } | 
 |  | 
 | // Creates an action that invokes 'function_impl' with no argument. | 
 | template <typename FunctionImpl> | 
 | internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> | 
 | InvokeWithoutArgs(FunctionImpl function_impl) { | 
 |   return {std::move(function_impl)}; | 
 | } | 
 |  | 
 | // Creates an action that invokes the given method on the given object | 
 | // with no argument. | 
 | template <class Class, typename MethodPtr> | 
 | internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( | 
 |     Class* obj_ptr, MethodPtr method_ptr) { | 
 |   return {obj_ptr, method_ptr}; | 
 | } | 
 |  | 
 | // Creates an action that performs an_action and throws away its | 
 | // result.  In other words, it changes the return type of an_action to | 
 | // void.  an_action MUST NOT return void, or the code won't compile. | 
 | template <typename A> | 
 | inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { | 
 |   return internal::IgnoreResultAction<A>(an_action); | 
 | } | 
 |  | 
 | // Creates a reference wrapper for the given L-value.  If necessary, | 
 | // you can explicitly specify the type of the reference.  For example, | 
 | // suppose 'derived' is an object of type Derived, ByRef(derived) | 
 | // would wrap a Derived&.  If you want to wrap a const Base& instead, | 
 | // where Base is a base class of Derived, just write: | 
 | // | 
 | //   ByRef<const Base>(derived) | 
 | // | 
 | // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. | 
 | // However, it may still be used for consistency with ByMove(). | 
 | template <typename T> | 
 | inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT | 
 |   return ::std::reference_wrapper<T>(l_value); | 
 | } | 
 |  | 
 | // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new | 
 | // instance of type T, constructed on the heap with constructor arguments | 
 | // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. | 
 | template <typename T, typename... Params> | 
 | internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( | 
 |     Params&&... params) { | 
 |   return {std::forward_as_tuple(std::forward<Params>(params)...)}; | 
 | } | 
 |  | 
 | // Action ReturnArg<k>() returns the k-th argument of the mock function. | 
 | template <size_t k> | 
 | internal::ReturnArgAction<k> ReturnArg() { | 
 |   return {}; | 
 | } | 
 |  | 
 | // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the | 
 | // mock function to *pointer. | 
 | template <size_t k, typename Ptr> | 
 | internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { | 
 |   return {pointer}; | 
 | } | 
 |  | 
 | // Action SaveArgPointee<k>(pointer) saves the value pointed to | 
 | // by the k-th (0-based) argument of the mock function to *pointer. | 
 | template <size_t k, typename Ptr> | 
 | internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { | 
 |   return {pointer}; | 
 | } | 
 |  | 
 | // Action SetArgReferee<k>(value) assigns 'value' to the variable | 
 | // referenced by the k-th (0-based) argument of the mock function. | 
 | template <size_t k, typename T> | 
 | internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( | 
 |     T&& value) { | 
 |   return {std::forward<T>(value)}; | 
 | } | 
 |  | 
 | // Action SetArrayArgument<k>(first, last) copies the elements in | 
 | // source range [first, last) to the array pointed to by the k-th | 
 | // (0-based) argument, which can be either a pointer or an | 
 | // iterator. The action does not take ownership of the elements in the | 
 | // source range. | 
 | template <size_t k, typename I1, typename I2> | 
 | internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, | 
 |                                                              I2 last) { | 
 |   return {first, last}; | 
 | } | 
 |  | 
 | // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock | 
 | // function. | 
 | template <size_t k> | 
 | internal::DeleteArgAction<k> DeleteArg() { | 
 |   return {}; | 
 | } | 
 |  | 
 | // This action returns the value pointed to by 'pointer'. | 
 | template <typename Ptr> | 
 | internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { | 
 |   return {pointer}; | 
 | } | 
 |  | 
 | // Action Throw(exception) can be used in a mock function of any type | 
 | // to throw the given exception.  Any copyable value can be thrown. | 
 | #if GTEST_HAS_EXCEPTIONS | 
 | template <typename T> | 
 | internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { | 
 |   return {std::forward<T>(exception)}; | 
 | } | 
 | #endif  // GTEST_HAS_EXCEPTIONS | 
 |  | 
 | namespace internal { | 
 |  | 
 | // A macro from the ACTION* family (defined later in gmock-generated-actions.h) | 
 | // defines an action that can be used in a mock function.  Typically, | 
 | // these actions only care about a subset of the arguments of the mock | 
 | // function.  For example, if such an action only uses the second | 
 | // argument, it can be used in any mock function that takes >= 2 | 
 | // arguments where the type of the second argument is compatible. | 
 | // | 
 | // Therefore, the action implementation must be prepared to take more | 
 | // arguments than it needs.  The ExcessiveArg type is used to | 
 | // represent those excessive arguments.  In order to keep the compiler | 
 | // error messages tractable, we define it in the testing namespace | 
 | // instead of testing::internal.  However, this is an INTERNAL TYPE | 
 | // and subject to change without notice, so a user MUST NOT USE THIS | 
 | // TYPE DIRECTLY. | 
 | struct ExcessiveArg {}; | 
 |  | 
 | // Builds an implementation of an Action<> for some particular signature, using | 
 | // a class defined by an ACTION* macro. | 
 | template <typename F, typename Impl> struct ActionImpl; | 
 |  | 
 | template <typename Impl> | 
 | struct ImplBase { | 
 |   struct Holder { | 
 |     // Allows each copy of the Action<> to get to the Impl. | 
 |     explicit operator const Impl&() const { return *ptr; } | 
 |     std::shared_ptr<Impl> ptr; | 
 |   }; | 
 |   using type = typename std::conditional<std::is_constructible<Impl>::value, | 
 |                                          Impl, Holder>::type; | 
 | }; | 
 |  | 
 | template <typename R, typename... Args, typename Impl> | 
 | struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { | 
 |   using Base = typename ImplBase<Impl>::type; | 
 |   using function_type = R(Args...); | 
 |   using args_type = std::tuple<Args...>; | 
 |  | 
 |   ActionImpl() = default;  // Only defined if appropriate for Base. | 
 |   explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { } | 
 |  | 
 |   R operator()(Args&&... arg) const { | 
 |     static constexpr size_t kMaxArgs = | 
 |         sizeof...(Args) <= 10 ? sizeof...(Args) : 10; | 
 |     return Apply(MakeIndexSequence<kMaxArgs>{}, | 
 |                  MakeIndexSequence<10 - kMaxArgs>{}, | 
 |                  args_type{std::forward<Args>(arg)...}); | 
 |   } | 
 |  | 
 |   template <std::size_t... arg_id, std::size_t... excess_id> | 
 |   R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, | 
 |           const args_type& args) const { | 
 |     // Impl need not be specific to the signature of action being implemented; | 
 |     // only the implementing function body needs to have all of the specific | 
 |     // types instantiated.  Up to 10 of the args that are provided by the | 
 |     // args_type get passed, followed by a dummy of unspecified type for the | 
 |     // remainder up to 10 explicit args. | 
 |     static constexpr ExcessiveArg kExcessArg{}; | 
 |     return static_cast<const Impl&>(*this).template gmock_PerformImpl< | 
 |         /*function_type=*/function_type, /*return_type=*/R, | 
 |         /*args_type=*/args_type, | 
 |         /*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>( | 
 |         /*args=*/args, std::get<arg_id>(args)..., | 
 |         ((void)excess_id, kExcessArg)...); | 
 |   } | 
 | }; | 
 |  | 
 | // Stores a default-constructed Impl as part of the Action<>'s | 
 | // std::function<>. The Impl should be trivial to copy. | 
 | template <typename F, typename Impl> | 
 | ::testing::Action<F> MakeAction() { | 
 |   return ::testing::Action<F>(ActionImpl<F, Impl>()); | 
 | } | 
 |  | 
 | // Stores just the one given instance of Impl. | 
 | template <typename F, typename Impl> | 
 | ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { | 
 |   return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); | 
 | } | 
 |  | 
 | #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ | 
 |   , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ | 
 | #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_           \ | 
 |   const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ | 
 |       GMOCK_INTERNAL_ARG_UNUSED, , 10) | 
 |  | 
 | #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i | 
 | #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ | 
 |   const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) | 
 |  | 
 | #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type | 
 | #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) | 
 |  | 
 | #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type | 
 | #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) | 
 |  | 
 | #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type | 
 | #define GMOCK_ACTION_TYPE_PARAMS_(params) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) | 
 |  | 
 | #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ | 
 |   , param##_type gmock_p##i | 
 | #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) | 
 |  | 
 | #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ | 
 |   , std::forward<param##_type>(gmock_p##i) | 
 | #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) | 
 |  | 
 | #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ | 
 |   , param(::std::forward<param##_type>(gmock_p##i)) | 
 | #define GMOCK_ACTION_INIT_PARAMS_(params) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) | 
 |  | 
 | #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; | 
 | #define GMOCK_ACTION_FIELD_PARAMS_(params) \ | 
 |   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) | 
 |  | 
 | #define GMOCK_INTERNAL_ACTION(name, full_name, params)                        \ | 
 |   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \ | 
 |   class full_name {                                                           \ | 
 |    public:                                                                    \ | 
 |     explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))              \ | 
 |         : impl_(std::make_shared<gmock_Impl>(                                 \ | 
 |                 GMOCK_ACTION_GVALUE_PARAMS_(params))) { }                     \ | 
 |     full_name(const full_name&) = default;                                    \ | 
 |     full_name(full_name&&) noexcept = default;                                \ | 
 |     template <typename F>                                                     \ | 
 |     operator ::testing::Action<F>() const {                                   \ | 
 |       return ::testing::internal::MakeAction<F>(impl_);                       \ | 
 |     }                                                                         \ | 
 |    private:                                                                   \ | 
 |     class gmock_Impl {                                                        \ | 
 |      public:                                                                  \ | 
 |       explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))           \ | 
 |           : GMOCK_ACTION_INIT_PARAMS_(params) {}                              \ | 
 |       template <typename function_type, typename return_type,                 \ | 
 |                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \ | 
 |       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ | 
 |       GMOCK_ACTION_FIELD_PARAMS_(params)                                      \ | 
 |     };                                                                        \ | 
 |     std::shared_ptr<const gmock_Impl> impl_;                                  \ | 
 |   };                                                                          \ | 
 |   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \ | 
 |   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                   \ | 
 |       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) {                             \ | 
 |     return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>(                      \ | 
 |         GMOCK_ACTION_GVALUE_PARAMS_(params));                                 \ | 
 |   }                                                                           \ | 
 |   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \ | 
 |   template <typename function_type, typename return_type, typename args_type, \ | 
 |             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \ | 
 |   return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::      \ | 
 |   gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. | 
 | #define ACTION(name)                                                          \ | 
 |   class name##Action {                                                        \ | 
 |    public:                                                                    \ | 
 |    explicit name##Action() noexcept {}                                        \ | 
 |    name##Action(const name##Action&) noexcept {}                              \ | 
 |     template <typename F>                                                     \ | 
 |     operator ::testing::Action<F>() const {                                   \ | 
 |       return ::testing::internal::MakeAction<F, gmock_Impl>();                \ | 
 |     }                                                                         \ | 
 |    private:                                                                   \ | 
 |     class gmock_Impl {                                                        \ | 
 |      public:                                                                  \ | 
 |       template <typename function_type, typename return_type,                 \ | 
 |                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \ | 
 |       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ | 
 |     };                                                                        \ | 
 |   };                                                                          \ | 
 |   inline name##Action name() GTEST_MUST_USE_RESULT_;                          \ | 
 |   inline name##Action name() { return name##Action(); }                       \ | 
 |   template <typename function_type, typename return_type, typename args_type, \ | 
 |             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \ | 
 |   return_type name##Action::gmock_Impl::gmock_PerformImpl(                    \ | 
 |       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const | 
 |  | 
 | #define ACTION_P(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P2(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P3(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P4(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P5(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P6(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P7(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P8(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P9(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P10(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) | 
 |  | 
 | }  // namespace testing | 
 |  | 
 | #ifdef _MSC_VER | 
 | # pragma warning(pop) | 
 | #endif | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | 
 | // Copyright 2007, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // This file implements some commonly used cardinalities.  More | 
 | // cardinalities can be defined by the user implementing the | 
 | // CardinalityInterface interface if necessary. | 
 |  | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ | 
 |  | 
 | #include <limits.h> | 
 | #include <memory> | 
 | #include <ostream>  // NOLINT | 
 |  | 
 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ | 
 | /* class A needs to have dll-interface to be used by clients of class B */) | 
 |  | 
 | namespace testing { | 
 |  | 
 | // To implement a cardinality Foo, define: | 
 | //   1. a class FooCardinality that implements the | 
 | //      CardinalityInterface interface, and | 
 | //   2. a factory function that creates a Cardinality object from a | 
 | //      const FooCardinality*. | 
 | // | 
 | // The two-level delegation design follows that of Matcher, providing | 
 | // consistency for extension developers.  It also eases ownership | 
 | // management as Cardinality objects can now be copied like plain values. | 
 |  | 
 | // The implementation of a cardinality. | 
 | class CardinalityInterface { | 
 |  public: | 
 |   virtual ~CardinalityInterface() {} | 
 |  | 
 |   // Conservative estimate on the lower/upper bound of the number of | 
 |   // calls allowed. | 
 |   virtual int ConservativeLowerBound() const { return 0; } | 
 |   virtual int ConservativeUpperBound() const { return INT_MAX; } | 
 |  | 
 |   // Returns true if and only if call_count calls will satisfy this | 
 |   // cardinality. | 
 |   virtual bool IsSatisfiedByCallCount(int call_count) const = 0; | 
 |  | 
 |   // Returns true if and only if call_count calls will saturate this | 
 |   // cardinality. | 
 |   virtual bool IsSaturatedByCallCount(int call_count) const = 0; | 
 |  | 
 |   // Describes self to an ostream. | 
 |   virtual void DescribeTo(::std::ostream* os) const = 0; | 
 | }; | 
 |  | 
 | // A Cardinality is a copyable and IMMUTABLE (except by assignment) | 
 | // object that specifies how many times a mock function is expected to | 
 | // be called.  The implementation of Cardinality is just a std::shared_ptr | 
 | // to const CardinalityInterface. Don't inherit from Cardinality! | 
 | class GTEST_API_ Cardinality { | 
 |  public: | 
 |   // Constructs a null cardinality.  Needed for storing Cardinality | 
 |   // objects in STL containers. | 
 |   Cardinality() {} | 
 |  | 
 |   // Constructs a Cardinality from its implementation. | 
 |   explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {} | 
 |  | 
 |   // Conservative estimate on the lower/upper bound of the number of | 
 |   // calls allowed. | 
 |   int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); } | 
 |   int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); } | 
 |  | 
 |   // Returns true if and only if call_count calls will satisfy this | 
 |   // cardinality. | 
 |   bool IsSatisfiedByCallCount(int call_count) const { | 
 |     return impl_->IsSatisfiedByCallCount(call_count); | 
 |   } | 
 |  | 
 |   // Returns true if and only if call_count calls will saturate this | 
 |   // cardinality. | 
 |   bool IsSaturatedByCallCount(int call_count) const { | 
 |     return impl_->IsSaturatedByCallCount(call_count); | 
 |   } | 
 |  | 
 |   // Returns true if and only if call_count calls will over-saturate this | 
 |   // cardinality, i.e. exceed the maximum number of allowed calls. | 
 |   bool IsOverSaturatedByCallCount(int call_count) const { | 
 |     return impl_->IsSaturatedByCallCount(call_count) && | 
 |         !impl_->IsSatisfiedByCallCount(call_count); | 
 |   } | 
 |  | 
 |   // Describes self to an ostream | 
 |   void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } | 
 |  | 
 |   // Describes the given actual call count to an ostream. | 
 |   static void DescribeActualCallCountTo(int actual_call_count, | 
 |                                         ::std::ostream* os); | 
 |  | 
 |  private: | 
 |   std::shared_ptr<const CardinalityInterface> impl_; | 
 | }; | 
 |  | 
 | // Creates a cardinality that allows at least n calls. | 
 | GTEST_API_ Cardinality AtLeast(int n); | 
 |  | 
 | // Creates a cardinality that allows at most n calls. | 
 | GTEST_API_ Cardinality AtMost(int n); | 
 |  | 
 | // Creates a cardinality that allows any number of calls. | 
 | GTEST_API_ Cardinality AnyNumber(); | 
 |  | 
 | // Creates a cardinality that allows between min and max calls. | 
 | GTEST_API_ Cardinality Between(int min, int max); | 
 |  | 
 | // Creates a cardinality that allows exactly n calls. | 
 | GTEST_API_ Cardinality Exactly(int n); | 
 |  | 
 | // Creates a cardinality from its implementation. | 
 | inline Cardinality MakeCardinality(const CardinalityInterface* c) { | 
 |   return Cardinality(c); | 
 | } | 
 |  | 
 | }  // namespace testing | 
 |  | 
 | GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ | 
 | // Copyright 2007, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // This file implements MOCK_METHOD. | 
 |  | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_  // NOLINT | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_  // NOLINT | 
 |  | 
 | #include <type_traits>  // IWYU pragma: keep | 
 | #include <utility>      // IWYU pragma: keep | 
 |  | 
 | // Copyright 2007, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // This file implements the ON_CALL() and EXPECT_CALL() macros. | 
 | // | 
 | // A user can use the ON_CALL() macro to specify the default action of | 
 | // a mock method.  The syntax is: | 
 | // | 
 | //   ON_CALL(mock_object, Method(argument-matchers)) | 
 | //       .With(multi-argument-matcher) | 
 | //       .WillByDefault(action); | 
 | // | 
 | //  where the .With() clause is optional. | 
 | // | 
 | // A user can use the EXPECT_CALL() macro to specify an expectation on | 
 | // a mock method.  The syntax is: | 
 | // | 
 | //   EXPECT_CALL(mock_object, Method(argument-matchers)) | 
 | //       .With(multi-argument-matchers) | 
 | //       .Times(cardinality) | 
 | //       .InSequence(sequences) | 
 | //       .After(expectations) | 
 | //       .WillOnce(action) | 
 | //       .WillRepeatedly(action) | 
 | //       .RetiresOnSaturation(); | 
 | // | 
 | // where all clauses are optional, and .InSequence()/.After()/ | 
 | // .WillOnce() can appear any number of times. | 
 |  | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ | 
 |  | 
 | #include <functional> | 
 | #include <map> | 
 | #include <memory> | 
 | #include <set> | 
 | #include <sstream> | 
 | #include <string> | 
 | #include <type_traits> | 
 | #include <utility> | 
 | #include <vector> | 
 | // Copyright 2007, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // The MATCHER* family of macros can be used in a namespace scope to | 
 | // define custom matchers easily. | 
 | // | 
 | // Basic Usage | 
 | // =========== | 
 | // | 
 | // The syntax | 
 | // | 
 | //   MATCHER(name, description_string) { statements; } | 
 | // | 
 | // defines a matcher with the given name that executes the statements, | 
 | // which must return a bool to indicate if the match succeeds.  Inside | 
 | // the statements, you can refer to the value being matched by 'arg', | 
 | // and refer to its type by 'arg_type'. | 
 | // | 
 | // The description string documents what the matcher does, and is used | 
 | // to generate the failure message when the match fails.  Since a | 
 | // MATCHER() is usually defined in a header file shared by multiple | 
 | // C++ source files, we require the description to be a C-string | 
 | // literal to avoid possible side effects.  It can be empty, in which | 
 | // case we'll use the sequence of words in the matcher name as the | 
 | // description. | 
 | // | 
 | // For example: | 
 | // | 
 | //   MATCHER(IsEven, "") { return (arg % 2) == 0; } | 
 | // | 
 | // allows you to write | 
 | // | 
 | //   // Expects mock_foo.Bar(n) to be called where n is even. | 
 | //   EXPECT_CALL(mock_foo, Bar(IsEven())); | 
 | // | 
 | // or, | 
 | // | 
 | //   // Verifies that the value of some_expression is even. | 
 | //   EXPECT_THAT(some_expression, IsEven()); | 
 | // | 
 | // If the above assertion fails, it will print something like: | 
 | // | 
 | //   Value of: some_expression | 
 | //   Expected: is even | 
 | //     Actual: 7 | 
 | // | 
 | // where the description "is even" is automatically calculated from the | 
 | // matcher name IsEven. | 
 | // | 
 | // Argument Type | 
 | // ============= | 
 | // | 
 | // Note that the type of the value being matched (arg_type) is | 
 | // determined by the context in which you use the matcher and is | 
 | // supplied to you by the compiler, so you don't need to worry about | 
 | // declaring it (nor can you).  This allows the matcher to be | 
 | // polymorphic.  For example, IsEven() can be used to match any type | 
 | // where the value of "(arg % 2) == 0" can be implicitly converted to | 
 | // a bool.  In the "Bar(IsEven())" example above, if method Bar() | 
 | // takes an int, 'arg_type' will be int; if it takes an unsigned long, | 
 | // 'arg_type' will be unsigned long; and so on. | 
 | // | 
 | // Parameterizing Matchers | 
 | // ======================= | 
 | // | 
 | // Sometimes you'll want to parameterize the matcher.  For that you | 
 | // can use another macro: | 
 | // | 
 | //   MATCHER_P(name, param_name, description_string) { statements; } | 
 | // | 
 | // For example: | 
 | // | 
 | //   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } | 
 | // | 
 | // will allow you to write: | 
 | // | 
 | //   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); | 
 | // | 
 | // which may lead to this message (assuming n is 10): | 
 | // | 
 | //   Value of: Blah("a") | 
 | //   Expected: has absolute value 10 | 
 | //     Actual: -9 | 
 | // | 
 | // Note that both the matcher description and its parameter are | 
 | // printed, making the message human-friendly. | 
 | // | 
 | // In the matcher definition body, you can write 'foo_type' to | 
 | // reference the type of a parameter named 'foo'.  For example, in the | 
 | // body of MATCHER_P(HasAbsoluteValue, value) above, you can write | 
 | // 'value_type' to refer to the type of 'value'. | 
 | // | 
 | // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to | 
 | // support multi-parameter matchers. | 
 | // | 
 | // Describing Parameterized Matchers | 
 | // ================================= | 
 | // | 
 | // The last argument to MATCHER*() is a string-typed expression.  The | 
 | // expression can reference all of the matcher's parameters and a | 
 | // special bool-typed variable named 'negation'.  When 'negation' is | 
 | // false, the expression should evaluate to the matcher's description; | 
 | // otherwise it should evaluate to the description of the negation of | 
 | // the matcher.  For example, | 
 | // | 
 | //   using testing::PrintToString; | 
 | // | 
 | //   MATCHER_P2(InClosedRange, low, hi, | 
 | //       std::string(negation ? "is not" : "is") + " in range [" + | 
 | //       PrintToString(low) + ", " + PrintToString(hi) + "]") { | 
 | //     return low <= arg && arg <= hi; | 
 | //   } | 
 | //   ... | 
 | //   EXPECT_THAT(3, InClosedRange(4, 6)); | 
 | //   EXPECT_THAT(3, Not(InClosedRange(2, 4))); | 
 | // | 
 | // would generate two failures that contain the text: | 
 | // | 
 | //   Expected: is in range [4, 6] | 
 | //   ... | 
 | //   Expected: is not in range [2, 4] | 
 | // | 
 | // If you specify "" as the description, the failure message will | 
 | // contain the sequence of words in the matcher name followed by the | 
 | // parameter values printed as a tuple.  For example, | 
 | // | 
 | //   MATCHER_P2(InClosedRange, low, hi, "") { ... } | 
 | //   ... | 
 | //   EXPECT_THAT(3, InClosedRange(4, 6)); | 
 | //   EXPECT_THAT(3, Not(InClosedRange(2, 4))); | 
 | // | 
 | // would generate two failures that contain the text: | 
 | // | 
 | //   Expected: in closed range (4, 6) | 
 | //   ... | 
 | //   Expected: not (in closed range (2, 4)) | 
 | // | 
 | // Types of Matcher Parameters | 
 | // =========================== | 
 | // | 
 | // For the purpose of typing, you can view | 
 | // | 
 | //   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } | 
 | // | 
 | // as shorthand for | 
 | // | 
 | //   template <typename p1_type, ..., typename pk_type> | 
 | //   FooMatcherPk<p1_type, ..., pk_type> | 
 | //   Foo(p1_type p1, ..., pk_type pk) { ... } | 
 | // | 
 | // When you write Foo(v1, ..., vk), the compiler infers the types of | 
 | // the parameters v1, ..., and vk for you.  If you are not happy with | 
 | // the result of the type inference, you can specify the types by | 
 | // explicitly instantiating the template, as in Foo<long, bool>(5, | 
 | // false).  As said earlier, you don't get to (or need to) specify | 
 | // 'arg_type' as that's determined by the context in which the matcher | 
 | // is used.  You can assign the result of expression Foo(p1, ..., pk) | 
 | // to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This | 
 | // can be useful when composing matchers. | 
 | // | 
 | // While you can instantiate a matcher template with reference types, | 
 | // passing the parameters by pointer usually makes your code more | 
 | // readable.  If, however, you still want to pass a parameter by | 
 | // reference, be aware that in the failure message generated by the | 
 | // matcher you will see the value of the referenced object but not its | 
 | // address. | 
 | // | 
 | // Explaining Match Results | 
 | // ======================== | 
 | // | 
 | // Sometimes the matcher description alone isn't enough to explain why | 
 | // the match has failed or succeeded.  For example, when expecting a | 
 | // long string, it can be very helpful to also print the diff between | 
 | // the expected string and the actual one.  To achieve that, you can | 
 | // optionally stream additional information to a special variable | 
 | // named result_listener, whose type is a pointer to class | 
 | // MatchResultListener: | 
 | // | 
 | //   MATCHER_P(EqualsLongString, str, "") { | 
 | //     if (arg == str) return true; | 
 | // | 
 | //     *result_listener << "the difference: " | 
 | ///                     << DiffStrings(str, arg); | 
 | //     return false; | 
 | //   } | 
 | // | 
 | // Overloading Matchers | 
 | // ==================== | 
 | // | 
 | // You can overload matchers with different numbers of parameters: | 
 | // | 
 | //   MATCHER_P(Blah, a, description_string1) { ... } | 
 | //   MATCHER_P2(Blah, a, b, description_string2) { ... } | 
 | // | 
 | // Caveats | 
 | // ======= | 
 | // | 
 | // When defining a new matcher, you should also consider implementing | 
 | // MatcherInterface or using MakePolymorphicMatcher().  These | 
 | // approaches require more work than the MATCHER* macros, but also | 
 | // give you more control on the types of the value being matched and | 
 | // the matcher parameters, which may leads to better compiler error | 
 | // messages when the matcher is used wrong.  They also allow | 
 | // overloading matchers based on parameter types (as opposed to just | 
 | // based on the number of parameters). | 
 | // | 
 | // MATCHER*() can only be used in a namespace scope as templates cannot be | 
 | // declared inside of a local class. | 
 | // | 
 | // More Information | 
 | // ================ | 
 | // | 
 | // To learn more about using these macros, please search for 'MATCHER' | 
 | // on | 
 | // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md | 
 | // | 
 | // This file also implements some commonly used argument matchers.  More | 
 | // matchers can be defined by the user implementing the | 
 | // MatcherInterface<T> interface if necessary. | 
 | // | 
 | // See googletest/include/gtest/gtest-matchers.h for the definition of class | 
 | // Matcher, class MatcherInterface, and others. | 
 |  | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <initializer_list> | 
 | #include <iterator> | 
 | #include <limits> | 
 | #include <memory> | 
 | #include <ostream>  // NOLINT | 
 | #include <sstream> | 
 | #include <string> | 
 | #include <type_traits> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 |  | 
 | // MSVC warning C5046 is new as of VS2017 version 15.8. | 
 | #if defined(_MSC_VER) && _MSC_VER >= 1915 | 
 | #define GMOCK_MAYBE_5046_ 5046 | 
 | #else | 
 | #define GMOCK_MAYBE_5046_ | 
 | #endif | 
 |  | 
 | GTEST_DISABLE_MSC_WARNINGS_PUSH_( | 
 |     4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by | 
 |                               clients of class B */ | 
 |     /* Symbol involving type with internal linkage not defined */) | 
 |  | 
 | namespace testing { | 
 |  | 
 | // To implement a matcher Foo for type T, define: | 
 | //   1. a class FooMatcherImpl that implements the | 
 | //      MatcherInterface<T> interface, and | 
 | //   2. a factory function that creates a Matcher<T> object from a | 
 | //      FooMatcherImpl*. | 
 | // | 
 | // The two-level delegation design makes it possible to allow a user | 
 | // to write "v" instead of "Eq(v)" where a Matcher is expected, which | 
 | // is impossible if we pass matchers by pointers.  It also eases | 
 | // ownership management as Matcher objects can now be copied like | 
 | // plain values. | 
 |  | 
 | // A match result listener that stores the explanation in a string. | 
 | class StringMatchResultListener : public MatchResultListener { | 
 |  public: | 
 |   StringMatchResultListener() : MatchResultListener(&ss_) {} | 
 |  | 
 |   // Returns the explanation accumulated so far. | 
 |   std::string str() const { return ss_.str(); } | 
 |  | 
 |   // Clears the explanation accumulated so far. | 
 |   void Clear() { ss_.str(""); } | 
 |  | 
 |  private: | 
 |   ::std::stringstream ss_; | 
 |  | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); | 
 | }; | 
 |  | 
 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION | 
 | // and MUST NOT BE USED IN USER CODE!!! | 
 | namespace internal { | 
 |  | 
 | // The MatcherCastImpl class template is a helper for implementing | 
 | // MatcherCast().  We need this helper in order to partially | 
 | // specialize the implementation of MatcherCast() (C++ allows | 
 | // class/struct templates to be partially specialized, but not | 
 | // function templates.). | 
 |  | 
 | // This general version is used when MatcherCast()'s argument is a | 
 | // polymorphic matcher (i.e. something that can be converted to a | 
 | // Matcher but is not one yet; for example, Eq(value)) or a value (for | 
 | // example, "hello"). | 
 | template <typename T, typename M> | 
 | class MatcherCastImpl { | 
 |  public: | 
 |   static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { | 
 |     // M can be a polymorphic matcher, in which case we want to use | 
 |     // its conversion operator to create Matcher<T>.  Or it can be a value | 
 |     // that should be passed to the Matcher<T>'s constructor. | 
 |     // | 
 |     // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a | 
 |     // polymorphic matcher because it'll be ambiguous if T has an implicit | 
 |     // constructor from M (this usually happens when T has an implicit | 
 |     // constructor from any type). | 
 |     // | 
 |     // It won't work to unconditionally implicit_cast | 
 |     // polymorphic_matcher_or_value to Matcher<T> because it won't trigger | 
 |     // a user-defined conversion from M to T if one exists (assuming M is | 
 |     // a value). | 
 |     return CastImpl(polymorphic_matcher_or_value, | 
 |                     std::is_convertible<M, Matcher<T>>{}, | 
 |                     std::is_convertible<M, T>{}); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <bool Ignore> | 
 |   static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, | 
 |                              std::true_type /* convertible_to_matcher */, | 
 |                              std::integral_constant<bool, Ignore>) { | 
 |     // M is implicitly convertible to Matcher<T>, which means that either | 
 |     // M is a polymorphic matcher or Matcher<T> has an implicit constructor | 
 |     // from M.  In both cases using the implicit conversion will produce a | 
 |     // matcher. | 
 |     // | 
 |     // Even if T has an implicit constructor from M, it won't be called because | 
 |     // creating Matcher<T> would require a chain of two user-defined conversions | 
 |     // (first to create T from M and then to create Matcher<T> from T). | 
 |     return polymorphic_matcher_or_value; | 
 |   } | 
 |  | 
 |   // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic | 
 |   // matcher. It's a value of a type implicitly convertible to T. Use direct | 
 |   // initialization to create a matcher. | 
 |   static Matcher<T> CastImpl(const M& value, | 
 |                              std::false_type /* convertible_to_matcher */, | 
 |                              std::true_type /* convertible_to_T */) { | 
 |     return Matcher<T>(ImplicitCast_<T>(value)); | 
 |   } | 
 |  | 
 |   // M can't be implicitly converted to either Matcher<T> or T. Attempt to use | 
 |   // polymorphic matcher Eq(value) in this case. | 
 |   // | 
 |   // Note that we first attempt to perform an implicit cast on the value and | 
 |   // only fall back to the polymorphic Eq() matcher afterwards because the | 
 |   // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end | 
 |   // which might be undefined even when Rhs is implicitly convertible to Lhs | 
 |   // (e.g. std::pair<const int, int> vs. std::pair<int, int>). | 
 |   // | 
 |   // We don't define this method inline as we need the declaration of Eq(). | 
 |   static Matcher<T> CastImpl(const M& value, | 
 |                              std::false_type /* convertible_to_matcher */, | 
 |                              std::false_type /* convertible_to_T */); | 
 | }; | 
 |  | 
 | // This more specialized version is used when MatcherCast()'s argument | 
 | // is already a Matcher.  This only compiles when type T can be | 
 | // statically converted to type U. | 
 | template <typename T, typename U> | 
 | class MatcherCastImpl<T, Matcher<U> > { | 
 |  public: | 
 |   static Matcher<T> Cast(const Matcher<U>& source_matcher) { | 
 |     return Matcher<T>(new Impl(source_matcher)); | 
 |   } | 
 |  | 
 |  private: | 
 |   class Impl : public MatcherInterface<T> { | 
 |    public: | 
 |     explicit Impl(const Matcher<U>& source_matcher) | 
 |         : source_matcher_(source_matcher) {} | 
 |  | 
 |     // We delegate the matching logic to the source matcher. | 
 |     bool MatchAndExplain(T x, MatchResultListener* listener) const override { | 
 |       using FromType = typename std::remove_cv<typename std::remove_pointer< | 
 |           typename std::remove_reference<T>::type>::type>::type; | 
 |       using ToType = typename std::remove_cv<typename std::remove_pointer< | 
 |           typename std::remove_reference<U>::type>::type>::type; | 
 |       // Do not allow implicitly converting base*/& to derived*/&. | 
 |       static_assert( | 
 |           // Do not trigger if only one of them is a pointer. That implies a | 
 |           // regular conversion and not a down_cast. | 
 |           (std::is_pointer<typename std::remove_reference<T>::type>::value != | 
 |            std::is_pointer<typename std::remove_reference<U>::type>::value) || | 
 |               std::is_same<FromType, ToType>::value || | 
 |               !std::is_base_of<FromType, ToType>::value, | 
 |           "Can't implicitly convert from <base> to <derived>"); | 
 |  | 
 |       // Do the cast to `U` explicitly if necessary. | 
 |       // Otherwise, let implicit conversions do the trick. | 
 |       using CastType = | 
 |           typename std::conditional<std::is_convertible<T&, const U&>::value, | 
 |                                     T&, U>::type; | 
 |  | 
 |       return source_matcher_.MatchAndExplain(static_cast<CastType>(x), | 
 |                                              listener); | 
 |     } | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       source_matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       source_matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<U> source_matcher_; | 
 |   }; | 
 | }; | 
 |  | 
 | // This even more specialized version is used for efficiently casting | 
 | // a matcher to its own type. | 
 | template <typename T> | 
 | class MatcherCastImpl<T, Matcher<T> > { | 
 |  public: | 
 |   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } | 
 | }; | 
 |  | 
 | // Template specialization for parameterless Matcher. | 
 | template <typename Derived> | 
 | class MatcherBaseImpl { | 
 |  public: | 
 |   MatcherBaseImpl() = default; | 
 |  | 
 |   template <typename T> | 
 |   operator ::testing::Matcher<T>() const {  // NOLINT(runtime/explicit) | 
 |     return ::testing::Matcher<T>(new | 
 |                                  typename Derived::template gmock_Impl<T>()); | 
 |   } | 
 | }; | 
 |  | 
 | // Template specialization for Matcher with parameters. | 
 | template <template <typename...> class Derived, typename... Ts> | 
 | class MatcherBaseImpl<Derived<Ts...>> { | 
 |  public: | 
 |   // Mark the constructor explicit for single argument T to avoid implicit | 
 |   // conversions. | 
 |   template <typename E = std::enable_if<sizeof...(Ts) == 1>, | 
 |             typename E::type* = nullptr> | 
 |   explicit MatcherBaseImpl(Ts... params) | 
 |       : params_(std::forward<Ts>(params)...) {} | 
 |   template <typename E = std::enable_if<sizeof...(Ts) != 1>, | 
 |             typename = typename E::type> | 
 |   MatcherBaseImpl(Ts... params)  // NOLINT | 
 |       : params_(std::forward<Ts>(params)...) {} | 
 |  | 
 |   template <typename F> | 
 |   operator ::testing::Matcher<F>() const {  // NOLINT(runtime/explicit) | 
 |     return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{}); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename F, std::size_t... tuple_ids> | 
 |   ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const { | 
 |     return ::testing::Matcher<F>( | 
 |         new typename Derived<Ts...>::template gmock_Impl<F>( | 
 |             std::get<tuple_ids>(params_)...)); | 
 |   } | 
 |  | 
 |   const std::tuple<Ts...> params_; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // In order to be safe and clear, casting between different matcher | 
 | // types is done explicitly via MatcherCast<T>(m), which takes a | 
 | // matcher m and returns a Matcher<T>.  It compiles only when T can be | 
 | // statically converted to the argument type of m. | 
 | template <typename T, typename M> | 
 | inline Matcher<T> MatcherCast(const M& matcher) { | 
 |   return internal::MatcherCastImpl<T, M>::Cast(matcher); | 
 | } | 
 |  | 
 | // This overload handles polymorphic matchers and values only since | 
 | // monomorphic matchers are handled by the next one. | 
 | template <typename T, typename M> | 
 | inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) { | 
 |   return MatcherCast<T>(polymorphic_matcher_or_value); | 
 | } | 
 |  | 
 | // This overload handles monomorphic matchers. | 
 | // | 
 | // In general, if type T can be implicitly converted to type U, we can | 
 | // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is | 
 | // contravariant): just keep a copy of the original Matcher<U>, convert the | 
 | // argument from type T to U, and then pass it to the underlying Matcher<U>. | 
 | // The only exception is when U is a reference and T is not, as the | 
 | // underlying Matcher<U> may be interested in the argument's address, which | 
 | // is not preserved in the conversion from T to U. | 
 | template <typename T, typename U> | 
 | inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { | 
 |   // Enforce that T can be implicitly converted to U. | 
 |   static_assert(std::is_convertible<const T&, const U&>::value, | 
 |                 "T must be implicitly convertible to U"); | 
 |   // Enforce that we are not converting a non-reference type T to a reference | 
 |   // type U. | 
 |   GTEST_COMPILE_ASSERT_( | 
 |       std::is_reference<T>::value || !std::is_reference<U>::value, | 
 |       cannot_convert_non_reference_arg_to_reference); | 
 |   // In case both T and U are arithmetic types, enforce that the | 
 |   // conversion is not lossy. | 
 |   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; | 
 |   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; | 
 |   constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; | 
 |   constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; | 
 |   GTEST_COMPILE_ASSERT_( | 
 |       kTIsOther || kUIsOther || | 
 |       (internal::LosslessArithmeticConvertible<RawT, RawU>::value), | 
 |       conversion_of_arithmetic_types_must_be_lossless); | 
 |   return MatcherCast<T>(matcher); | 
 | } | 
 |  | 
 | // A<T>() returns a matcher that matches any value of type T. | 
 | template <typename T> | 
 | Matcher<T> A(); | 
 |  | 
 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION | 
 | // and MUST NOT BE USED IN USER CODE!!! | 
 | namespace internal { | 
 |  | 
 | // If the explanation is not empty, prints it to the ostream. | 
 | inline void PrintIfNotEmpty(const std::string& explanation, | 
 |                             ::std::ostream* os) { | 
 |   if (explanation != "" && os != nullptr) { | 
 |     *os << ", " << explanation; | 
 |   } | 
 | } | 
 |  | 
 | // Returns true if the given type name is easy to read by a human. | 
 | // This is used to decide whether printing the type of a value might | 
 | // be helpful. | 
 | inline bool IsReadableTypeName(const std::string& type_name) { | 
 |   // We consider a type name readable if it's short or doesn't contain | 
 |   // a template or function type. | 
 |   return (type_name.length() <= 20 || | 
 |           type_name.find_first_of("<(") == std::string::npos); | 
 | } | 
 |  | 
 | // Matches the value against the given matcher, prints the value and explains | 
 | // the match result to the listener. Returns the match result. | 
 | // 'listener' must not be NULL. | 
 | // Value cannot be passed by const reference, because some matchers take a | 
 | // non-const argument. | 
 | template <typename Value, typename T> | 
 | bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, | 
 |                           MatchResultListener* listener) { | 
 |   if (!listener->IsInterested()) { | 
 |     // If the listener is not interested, we do not need to construct the | 
 |     // inner explanation. | 
 |     return matcher.Matches(value); | 
 |   } | 
 |  | 
 |   StringMatchResultListener inner_listener; | 
 |   const bool match = matcher.MatchAndExplain(value, &inner_listener); | 
 |  | 
 |   UniversalPrint(value, listener->stream()); | 
 | #if GTEST_HAS_RTTI | 
 |   const std::string& type_name = GetTypeName<Value>(); | 
 |   if (IsReadableTypeName(type_name)) | 
 |     *listener->stream() << " (of type " << type_name << ")"; | 
 | #endif | 
 |   PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
 |  | 
 |   return match; | 
 | } | 
 |  | 
 | // An internal helper class for doing compile-time loop on a tuple's | 
 | // fields. | 
 | template <size_t N> | 
 | class TuplePrefix { | 
 |  public: | 
 |   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true | 
 |   // if and only if the first N fields of matcher_tuple matches | 
 |   // the first N fields of value_tuple, respectively. | 
 |   template <typename MatcherTuple, typename ValueTuple> | 
 |   static bool Matches(const MatcherTuple& matcher_tuple, | 
 |                       const ValueTuple& value_tuple) { | 
 |     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && | 
 |            std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); | 
 |   } | 
 |  | 
 |   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) | 
 |   // describes failures in matching the first N fields of matchers | 
 |   // against the first N fields of values.  If there is no failure, | 
 |   // nothing will be streamed to os. | 
 |   template <typename MatcherTuple, typename ValueTuple> | 
 |   static void ExplainMatchFailuresTo(const MatcherTuple& matchers, | 
 |                                      const ValueTuple& values, | 
 |                                      ::std::ostream* os) { | 
 |     // First, describes failures in the first N - 1 fields. | 
 |     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); | 
 |  | 
 |     // Then describes the failure (if any) in the (N - 1)-th (0-based) | 
 |     // field. | 
 |     typename std::tuple_element<N - 1, MatcherTuple>::type matcher = | 
 |         std::get<N - 1>(matchers); | 
 |     typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; | 
 |     const Value& value = std::get<N - 1>(values); | 
 |     StringMatchResultListener listener; | 
 |     if (!matcher.MatchAndExplain(value, &listener)) { | 
 |       *os << "  Expected arg #" << N - 1 << ": "; | 
 |       std::get<N - 1>(matchers).DescribeTo(os); | 
 |       *os << "\n           Actual: "; | 
 |       // We remove the reference in type Value to prevent the | 
 |       // universal printer from printing the address of value, which | 
 |       // isn't interesting to the user most of the time.  The | 
 |       // matcher's MatchAndExplain() method handles the case when | 
 |       // the address is interesting. | 
 |       internal::UniversalPrint(value, os); | 
 |       PrintIfNotEmpty(listener.str(), os); | 
 |       *os << "\n"; | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | // The base case. | 
 | template <> | 
 | class TuplePrefix<0> { | 
 |  public: | 
 |   template <typename MatcherTuple, typename ValueTuple> | 
 |   static bool Matches(const MatcherTuple& /* matcher_tuple */, | 
 |                       const ValueTuple& /* value_tuple */) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   template <typename MatcherTuple, typename ValueTuple> | 
 |   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, | 
 |                                      const ValueTuple& /* values */, | 
 |                                      ::std::ostream* /* os */) {} | 
 | }; | 
 |  | 
 | // TupleMatches(matcher_tuple, value_tuple) returns true if and only if | 
 | // all matchers in matcher_tuple match the corresponding fields in | 
 | // value_tuple.  It is a compiler error if matcher_tuple and | 
 | // value_tuple have different number of fields or incompatible field | 
 | // types. | 
 | template <typename MatcherTuple, typename ValueTuple> | 
 | bool TupleMatches(const MatcherTuple& matcher_tuple, | 
 |                   const ValueTuple& value_tuple) { | 
 |   // Makes sure that matcher_tuple and value_tuple have the same | 
 |   // number of fields. | 
 |   GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value == | 
 |                             std::tuple_size<ValueTuple>::value, | 
 |                         matcher_and_value_have_different_numbers_of_fields); | 
 |   return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, | 
 |                                                                   value_tuple); | 
 | } | 
 |  | 
 | // Describes failures in matching matchers against values.  If there | 
 | // is no failure, nothing will be streamed to os. | 
 | template <typename MatcherTuple, typename ValueTuple> | 
 | void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, | 
 |                                 const ValueTuple& values, | 
 |                                 ::std::ostream* os) { | 
 |   TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( | 
 |       matchers, values, os); | 
 | } | 
 |  | 
 | // TransformTupleValues and its helper. | 
 | // | 
 | // TransformTupleValuesHelper hides the internal machinery that | 
 | // TransformTupleValues uses to implement a tuple traversal. | 
 | template <typename Tuple, typename Func, typename OutIter> | 
 | class TransformTupleValuesHelper { | 
 |  private: | 
 |   typedef ::std::tuple_size<Tuple> TupleSize; | 
 |  | 
 |  public: | 
 |   // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. | 
 |   // Returns the final value of 'out' in case the caller needs it. | 
 |   static OutIter Run(Func f, const Tuple& t, OutIter out) { | 
 |     return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename Tup, size_t kRemainingSize> | 
 |   struct IterateOverTuple { | 
 |     OutIter operator() (Func f, const Tup& t, OutIter out) const { | 
 |       *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); | 
 |       return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); | 
 |     } | 
 |   }; | 
 |   template <typename Tup> | 
 |   struct IterateOverTuple<Tup, 0> { | 
 |     OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { | 
 |       return out; | 
 |     } | 
 |   }; | 
 | }; | 
 |  | 
 | // Successively invokes 'f(element)' on each element of the tuple 't', | 
 | // appending each result to the 'out' iterator. Returns the final value | 
 | // of 'out'. | 
 | template <typename Tuple, typename Func, typename OutIter> | 
 | OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { | 
 |   return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); | 
 | } | 
 |  | 
 | // Implements _, a matcher that matches any value of any | 
 | // type.  This is a polymorphic matcher, so we need a template type | 
 | // conversion operator to make it appearing as a Matcher<T> for any | 
 | // type T. | 
 | class AnythingMatcher { | 
 |  public: | 
 |   using is_gtest_matcher = void; | 
 |  | 
 |   template <typename T> | 
 |   bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const { | 
 |     return true; | 
 |   } | 
 |   void DescribeTo(std::ostream* os) const { *os << "is anything"; } | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     // This is mostly for completeness' sake, as it's not very useful | 
 |     // to write Not(A<bool>()).  However we cannot completely rule out | 
 |     // such a possibility, and it doesn't hurt to be prepared. | 
 |     *os << "never matches"; | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the polymorphic IsNull() matcher, which matches any raw or smart | 
 | // pointer that is NULL. | 
 | class IsNullMatcher { | 
 |  public: | 
 |   template <typename Pointer> | 
 |   bool MatchAndExplain(const Pointer& p, | 
 |                        MatchResultListener* /* listener */) const { | 
 |     return p == nullptr; | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "isn't NULL"; | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the polymorphic NotNull() matcher, which matches any raw or smart | 
 | // pointer that is not NULL. | 
 | class NotNullMatcher { | 
 |  public: | 
 |   template <typename Pointer> | 
 |   bool MatchAndExplain(const Pointer& p, | 
 |                        MatchResultListener* /* listener */) const { | 
 |     return p != nullptr; | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "is NULL"; | 
 |   } | 
 | }; | 
 |  | 
 | // Ref(variable) matches any argument that is a reference to | 
 | // 'variable'.  This matcher is polymorphic as it can match any | 
 | // super type of the type of 'variable'. | 
 | // | 
 | // The RefMatcher template class implements Ref(variable).  It can | 
 | // only be instantiated with a reference type.  This prevents a user | 
 | // from mistakenly using Ref(x) to match a non-reference function | 
 | // argument.  For example, the following will righteously cause a | 
 | // compiler error: | 
 | // | 
 | //   int n; | 
 | //   Matcher<int> m1 = Ref(n);   // This won't compile. | 
 | //   Matcher<int&> m2 = Ref(n);  // This will compile. | 
 | template <typename T> | 
 | class RefMatcher; | 
 |  | 
 | template <typename T> | 
 | class RefMatcher<T&> { | 
 |   // Google Mock is a generic framework and thus needs to support | 
 |   // mocking any function types, including those that take non-const | 
 |   // reference arguments.  Therefore the template parameter T (and | 
 |   // Super below) can be instantiated to either a const type or a | 
 |   // non-const type. | 
 |  public: | 
 |   // RefMatcher() takes a T& instead of const T&, as we want the | 
 |   // compiler to catch using Ref(const_value) as a matcher for a | 
 |   // non-const reference. | 
 |   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT | 
 |  | 
 |   template <typename Super> | 
 |   operator Matcher<Super&>() const { | 
 |     // By passing object_ (type T&) to Impl(), which expects a Super&, | 
 |     // we make sure that Super is a super type of T.  In particular, | 
 |     // this catches using Ref(const_value) as a matcher for a | 
 |     // non-const reference, as you cannot implicitly convert a const | 
 |     // reference to a non-const reference. | 
 |     return MakeMatcher(new Impl<Super>(object_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename Super> | 
 |   class Impl : public MatcherInterface<Super&> { | 
 |    public: | 
 |     explicit Impl(Super& x) : object_(x) {}  // NOLINT | 
 |  | 
 |     // MatchAndExplain() takes a Super& (as opposed to const Super&) | 
 |     // in order to match the interface MatcherInterface<Super&>. | 
 |     bool MatchAndExplain(Super& x, | 
 |                          MatchResultListener* listener) const override { | 
 |       *listener << "which is located @" << static_cast<const void*>(&x); | 
 |       return &x == &object_; | 
 |     } | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "references the variable "; | 
 |       UniversalPrinter<Super&>::Print(object_, os); | 
 |     } | 
 |  | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       *os << "does not reference the variable "; | 
 |       UniversalPrinter<Super&>::Print(object_, os); | 
 |     } | 
 |  | 
 |    private: | 
 |     const Super& object_; | 
 |   }; | 
 |  | 
 |   T& object_; | 
 | }; | 
 |  | 
 | // Polymorphic helper functions for narrow and wide string matchers. | 
 | inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { | 
 |   return String::CaseInsensitiveCStringEquals(lhs, rhs); | 
 | } | 
 |  | 
 | inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, | 
 |                                          const wchar_t* rhs) { | 
 |   return String::CaseInsensitiveWideCStringEquals(lhs, rhs); | 
 | } | 
 |  | 
 | // String comparison for narrow or wide strings that can have embedded NUL | 
 | // characters. | 
 | template <typename StringType> | 
 | bool CaseInsensitiveStringEquals(const StringType& s1, | 
 |                                  const StringType& s2) { | 
 |   // Are the heads equal? | 
 |   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Skip the equal heads. | 
 |   const typename StringType::value_type nul = 0; | 
 |   const size_t i1 = s1.find(nul), i2 = s2.find(nul); | 
 |  | 
 |   // Are we at the end of either s1 or s2? | 
 |   if (i1 == StringType::npos || i2 == StringType::npos) { | 
 |     return i1 == i2; | 
 |   } | 
 |  | 
 |   // Are the tails equal? | 
 |   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); | 
 | } | 
 |  | 
 | // String matchers. | 
 |  | 
 | // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. | 
 | template <typename StringType> | 
 | class StrEqualityMatcher { | 
 |  public: | 
 |   StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive) | 
 |       : string_(std::move(str)), | 
 |         expect_eq_(expect_eq), | 
 |         case_sensitive_(case_sensitive) {} | 
 |  | 
 | #if GTEST_INTERNAL_HAS_STRING_VIEW | 
 |   bool MatchAndExplain(const internal::StringView& s, | 
 |                        MatchResultListener* listener) const { | 
 |     // This should fail to compile if StringView is used with wide | 
 |     // strings. | 
 |     const StringType& str = std::string(s); | 
 |     return MatchAndExplain(str, listener); | 
 |   } | 
 | #endif  // GTEST_INTERNAL_HAS_STRING_VIEW | 
 |  | 
 |   // Accepts pointer types, particularly: | 
 |   //   const char* | 
 |   //   char* | 
 |   //   const wchar_t* | 
 |   //   wchar_t* | 
 |   template <typename CharType> | 
 |   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
 |     if (s == nullptr) { | 
 |       return !expect_eq_; | 
 |     } | 
 |     return MatchAndExplain(StringType(s), listener); | 
 |   } | 
 |  | 
 |   // Matches anything that can convert to StringType. | 
 |   // | 
 |   // This is a template, not just a plain function with const StringType&, | 
 |   // because StringView has some interfering non-explicit constructors. | 
 |   template <typename MatcheeStringType> | 
 |   bool MatchAndExplain(const MatcheeStringType& s, | 
 |                        MatchResultListener* /* listener */) const { | 
 |     const StringType s2(s); | 
 |     const bool eq = case_sensitive_ ? s2 == string_ : | 
 |         CaseInsensitiveStringEquals(s2, string_); | 
 |     return expect_eq_ == eq; | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     DescribeToHelper(expect_eq_, os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     DescribeToHelper(!expect_eq_, os); | 
 |   } | 
 |  | 
 |  private: | 
 |   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { | 
 |     *os << (expect_eq ? "is " : "isn't "); | 
 |     *os << "equal to "; | 
 |     if (!case_sensitive_) { | 
 |       *os << "(ignoring case) "; | 
 |     } | 
 |     UniversalPrint(string_, os); | 
 |   } | 
 |  | 
 |   const StringType string_; | 
 |   const bool expect_eq_; | 
 |   const bool case_sensitive_; | 
 | }; | 
 |  | 
 | // Implements the polymorphic HasSubstr(substring) matcher, which | 
 | // can be used as a Matcher<T> as long as T can be converted to a | 
 | // string. | 
 | template <typename StringType> | 
 | class HasSubstrMatcher { | 
 |  public: | 
 |   explicit HasSubstrMatcher(const StringType& substring) | 
 |       : substring_(substring) {} | 
 |  | 
 | #if GTEST_INTERNAL_HAS_STRING_VIEW | 
 |   bool MatchAndExplain(const internal::StringView& s, | 
 |                        MatchResultListener* listener) const { | 
 |     // This should fail to compile if StringView is used with wide | 
 |     // strings. | 
 |     const StringType& str = std::string(s); | 
 |     return MatchAndExplain(str, listener); | 
 |   } | 
 | #endif  // GTEST_INTERNAL_HAS_STRING_VIEW | 
 |  | 
 |   // Accepts pointer types, particularly: | 
 |   //   const char* | 
 |   //   char* | 
 |   //   const wchar_t* | 
 |   //   wchar_t* | 
 |   template <typename CharType> | 
 |   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
 |     return s != nullptr && MatchAndExplain(StringType(s), listener); | 
 |   } | 
 |  | 
 |   // Matches anything that can convert to StringType. | 
 |   // | 
 |   // This is a template, not just a plain function with const StringType&, | 
 |   // because StringView has some interfering non-explicit constructors. | 
 |   template <typename MatcheeStringType> | 
 |   bool MatchAndExplain(const MatcheeStringType& s, | 
 |                        MatchResultListener* /* listener */) const { | 
 |     return StringType(s).find(substring_) != StringType::npos; | 
 |   } | 
 |  | 
 |   // Describes what this matcher matches. | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "has substring "; | 
 |     UniversalPrint(substring_, os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "has no substring "; | 
 |     UniversalPrint(substring_, os); | 
 |   } | 
 |  | 
 |  private: | 
 |   const StringType substring_; | 
 | }; | 
 |  | 
 | // Implements the polymorphic StartsWith(substring) matcher, which | 
 | // can be used as a Matcher<T> as long as T can be converted to a | 
 | // string. | 
 | template <typename StringType> | 
 | class StartsWithMatcher { | 
 |  public: | 
 |   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { | 
 |   } | 
 |  | 
 | #if GTEST_INTERNAL_HAS_STRING_VIEW | 
 |   bool MatchAndExplain(const internal::StringView& s, | 
 |                        MatchResultListener* listener) const { | 
 |     // This should fail to compile if StringView is used with wide | 
 |     // strings. | 
 |     const StringType& str = std::string(s); | 
 |     return MatchAndExplain(str, listener); | 
 |   } | 
 | #endif  // GTEST_INTERNAL_HAS_STRING_VIEW | 
 |  | 
 |   // Accepts pointer types, particularly: | 
 |   //   const char* | 
 |   //   char* | 
 |   //   const wchar_t* | 
 |   //   wchar_t* | 
 |   template <typename CharType> | 
 |   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
 |     return s != nullptr && MatchAndExplain(StringType(s), listener); | 
 |   } | 
 |  | 
 |   // Matches anything that can convert to StringType. | 
 |   // | 
 |   // This is a template, not just a plain function with const StringType&, | 
 |   // because StringView has some interfering non-explicit constructors. | 
 |   template <typename MatcheeStringType> | 
 |   bool MatchAndExplain(const MatcheeStringType& s, | 
 |                        MatchResultListener* /* listener */) const { | 
 |     const StringType& s2(s); | 
 |     return s2.length() >= prefix_.length() && | 
 |         s2.substr(0, prefix_.length()) == prefix_; | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "starts with "; | 
 |     UniversalPrint(prefix_, os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "doesn't start with "; | 
 |     UniversalPrint(prefix_, os); | 
 |   } | 
 |  | 
 |  private: | 
 |   const StringType prefix_; | 
 | }; | 
 |  | 
 | // Implements the polymorphic EndsWith(substring) matcher, which | 
 | // can be used as a Matcher<T> as long as T can be converted to a | 
 | // string. | 
 | template <typename StringType> | 
 | class EndsWithMatcher { | 
 |  public: | 
 |   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} | 
 |  | 
 | #if GTEST_INTERNAL_HAS_STRING_VIEW | 
 |   bool MatchAndExplain(const internal::StringView& s, | 
 |                        MatchResultListener* listener) const { | 
 |     // This should fail to compile if StringView is used with wide | 
 |     // strings. | 
 |     const StringType& str = std::string(s); | 
 |     return MatchAndExplain(str, listener); | 
 |   } | 
 | #endif  // GTEST_INTERNAL_HAS_STRING_VIEW | 
 |  | 
 |   // Accepts pointer types, particularly: | 
 |   //   const char* | 
 |   //   char* | 
 |   //   const wchar_t* | 
 |   //   wchar_t* | 
 |   template <typename CharType> | 
 |   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
 |     return s != nullptr && MatchAndExplain(StringType(s), listener); | 
 |   } | 
 |  | 
 |   // Matches anything that can convert to StringType. | 
 |   // | 
 |   // This is a template, not just a plain function with const StringType&, | 
 |   // because StringView has some interfering non-explicit constructors. | 
 |   template <typename MatcheeStringType> | 
 |   bool MatchAndExplain(const MatcheeStringType& s, | 
 |                        MatchResultListener* /* listener */) const { | 
 |     const StringType& s2(s); | 
 |     return s2.length() >= suffix_.length() && | 
 |         s2.substr(s2.length() - suffix_.length()) == suffix_; | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "ends with "; | 
 |     UniversalPrint(suffix_, os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "doesn't end with "; | 
 |     UniversalPrint(suffix_, os); | 
 |   } | 
 |  | 
 |  private: | 
 |   const StringType suffix_; | 
 | }; | 
 |  | 
 | // Implements a matcher that compares the two fields of a 2-tuple | 
 | // using one of the ==, <=, <, etc, operators.  The two fields being | 
 | // compared don't have to have the same type. | 
 | // | 
 | // The matcher defined here is polymorphic (for example, Eq() can be | 
 | // used to match a std::tuple<int, short>, a std::tuple<const long&, double>, | 
 | // etc).  Therefore we use a template type conversion operator in the | 
 | // implementation. | 
 | template <typename D, typename Op> | 
 | class PairMatchBase { | 
 |  public: | 
 |   template <typename T1, typename T2> | 
 |   operator Matcher<::std::tuple<T1, T2>>() const { | 
 |     return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); | 
 |   } | 
 |   template <typename T1, typename T2> | 
 |   operator Matcher<const ::std::tuple<T1, T2>&>() const { | 
 |     return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); | 
 |   } | 
 |  | 
 |  private: | 
 |   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT | 
 |     return os << D::Desc(); | 
 |   } | 
 |  | 
 |   template <typename Tuple> | 
 |   class Impl : public MatcherInterface<Tuple> { | 
 |    public: | 
 |     bool MatchAndExplain(Tuple args, | 
 |                          MatchResultListener* /* listener */) const override { | 
 |       return Op()(::std::get<0>(args), ::std::get<1>(args)); | 
 |     } | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "are " << GetDesc; | 
 |     } | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       *os << "aren't " << GetDesc; | 
 |     } | 
 |   }; | 
 | }; | 
 |  | 
 | class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { | 
 |  public: | 
 |   static const char* Desc() { return "an equal pair"; } | 
 | }; | 
 | class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { | 
 |  public: | 
 |   static const char* Desc() { return "an unequal pair"; } | 
 | }; | 
 | class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { | 
 |  public: | 
 |   static const char* Desc() { return "a pair where the first < the second"; } | 
 | }; | 
 | class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { | 
 |  public: | 
 |   static const char* Desc() { return "a pair where the first > the second"; } | 
 | }; | 
 | class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { | 
 |  public: | 
 |   static const char* Desc() { return "a pair where the first <= the second"; } | 
 | }; | 
 | class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { | 
 |  public: | 
 |   static const char* Desc() { return "a pair where the first >= the second"; } | 
 | }; | 
 |  | 
 | // Implements the Not(...) matcher for a particular argument type T. | 
 | // We do not nest it inside the NotMatcher class template, as that | 
 | // will prevent different instantiations of NotMatcher from sharing | 
 | // the same NotMatcherImpl<T> class. | 
 | template <typename T> | 
 | class NotMatcherImpl : public MatcherInterface<const T&> { | 
 |  public: | 
 |   explicit NotMatcherImpl(const Matcher<T>& matcher) | 
 |       : matcher_(matcher) {} | 
 |  | 
 |   bool MatchAndExplain(const T& x, | 
 |                        MatchResultListener* listener) const override { | 
 |     return !matcher_.MatchAndExplain(x, listener); | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const override { | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const override { | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |  private: | 
 |   const Matcher<T> matcher_; | 
 | }; | 
 |  | 
 | // Implements the Not(m) matcher, which matches a value that doesn't | 
 | // match matcher m. | 
 | template <typename InnerMatcher> | 
 | class NotMatcher { | 
 |  public: | 
 |   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} | 
 |  | 
 |   // This template type conversion operator allows Not(m) to be used | 
 |   // to match any type m can match. | 
 |   template <typename T> | 
 |   operator Matcher<T>() const { | 
 |     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); | 
 |   } | 
 |  | 
 |  private: | 
 |   InnerMatcher matcher_; | 
 | }; | 
 |  | 
 | // Implements the AllOf(m1, m2) matcher for a particular argument type | 
 | // T. We do not nest it inside the BothOfMatcher class template, as | 
 | // that will prevent different instantiations of BothOfMatcher from | 
 | // sharing the same BothOfMatcherImpl<T> class. | 
 | template <typename T> | 
 | class AllOfMatcherImpl : public MatcherInterface<const T&> { | 
 |  public: | 
 |   explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) | 
 |       : matchers_(std::move(matchers)) {} | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const override { | 
 |     *os << "("; | 
 |     for (size_t i = 0; i < matchers_.size(); ++i) { | 
 |       if (i != 0) *os << ") and ("; | 
 |       matchers_[i].DescribeTo(os); | 
 |     } | 
 |     *os << ")"; | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const override { | 
 |     *os << "("; | 
 |     for (size_t i = 0; i < matchers_.size(); ++i) { | 
 |       if (i != 0) *os << ") or ("; | 
 |       matchers_[i].DescribeNegationTo(os); | 
 |     } | 
 |     *os << ")"; | 
 |   } | 
 |  | 
 |   bool MatchAndExplain(const T& x, | 
 |                        MatchResultListener* listener) const override { | 
 |     // If either matcher1_ or matcher2_ doesn't match x, we only need | 
 |     // to explain why one of them fails. | 
 |     std::string all_match_result; | 
 |  | 
 |     for (size_t i = 0; i < matchers_.size(); ++i) { | 
 |       StringMatchResultListener slistener; | 
 |       if (matchers_[i].MatchAndExplain(x, &slistener)) { | 
 |         if (all_match_result.empty()) { | 
 |           all_match_result = slistener.str(); | 
 |         } else { | 
 |           std::string result = slistener.str(); | 
 |           if (!result.empty()) { | 
 |             all_match_result += ", and "; | 
 |             all_match_result += result; | 
 |           } | 
 |         } | 
 |       } else { | 
 |         *listener << slistener.str(); | 
 |         return false; | 
 |       } | 
 |     } | 
 |  | 
 |     // Otherwise we need to explain why *both* of them match. | 
 |     *listener << all_match_result; | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   const std::vector<Matcher<T> > matchers_; | 
 | }; | 
 |  | 
 | // VariadicMatcher is used for the variadic implementation of | 
 | // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). | 
 | // CombiningMatcher<T> is used to recursively combine the provided matchers | 
 | // (of type Args...). | 
 | template <template <typename T> class CombiningMatcher, typename... Args> | 
 | class VariadicMatcher { | 
 |  public: | 
 |   VariadicMatcher(const Args&... matchers)  // NOLINT | 
 |       : matchers_(matchers...) { | 
 |     static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); | 
 |   } | 
 |  | 
 |   VariadicMatcher(const VariadicMatcher&) = default; | 
 |   VariadicMatcher& operator=(const VariadicMatcher&) = delete; | 
 |  | 
 |   // This template type conversion operator allows an | 
 |   // VariadicMatcher<Matcher1, Matcher2...> object to match any type that | 
 |   // all of the provided matchers (Matcher1, Matcher2, ...) can match. | 
 |   template <typename T> | 
 |   operator Matcher<T>() const { | 
 |     std::vector<Matcher<T> > values; | 
 |     CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); | 
 |     return Matcher<T>(new CombiningMatcher<T>(std::move(values))); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename T, size_t I> | 
 |   void CreateVariadicMatcher(std::vector<Matcher<T> >* values, | 
 |                              std::integral_constant<size_t, I>) const { | 
 |     values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); | 
 |     CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); | 
 |   } | 
 |  | 
 |   template <typename T> | 
 |   void CreateVariadicMatcher( | 
 |       std::vector<Matcher<T> >*, | 
 |       std::integral_constant<size_t, sizeof...(Args)>) const {} | 
 |  | 
 |   std::tuple<Args...> matchers_; | 
 | }; | 
 |  | 
 | template <typename... Args> | 
 | using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; | 
 |  | 
 | // Implements the AnyOf(m1, m2) matcher for a particular argument type | 
 | // T.  We do not nest it inside the AnyOfMatcher class template, as | 
 | // that will prevent different instantiations of AnyOfMatcher from | 
 | // sharing the same EitherOfMatcherImpl<T> class. | 
 | template <typename T> | 
 | class AnyOfMatcherImpl : public MatcherInterface<const T&> { | 
 |  public: | 
 |   explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) | 
 |       : matchers_(std::move(matchers)) {} | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const override { | 
 |     *os << "("; | 
 |     for (size_t i = 0; i < matchers_.size(); ++i) { | 
 |       if (i != 0) *os << ") or ("; | 
 |       matchers_[i].DescribeTo(os); | 
 |     } | 
 |     *os << ")"; | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const override { | 
 |     *os << "("; | 
 |     for (size_t i = 0; i < matchers_.size(); ++i) { | 
 |       if (i != 0) *os << ") and ("; | 
 |       matchers_[i].DescribeNegationTo(os); | 
 |     } | 
 |     *os << ")"; | 
 |   } | 
 |  | 
 |   bool MatchAndExplain(const T& x, | 
 |                        MatchResultListener* listener) const override { | 
 |     std::string no_match_result; | 
 |  | 
 |     // If either matcher1_ or matcher2_ matches x, we just need to | 
 |     // explain why *one* of them matches. | 
 |     for (size_t i = 0; i < matchers_.size(); ++i) { | 
 |       StringMatchResultListener slistener; | 
 |       if (matchers_[i].MatchAndExplain(x, &slistener)) { | 
 |         *listener << slistener.str(); | 
 |         return true; | 
 |       } else { | 
 |         if (no_match_result.empty()) { | 
 |           no_match_result = slistener.str(); | 
 |         } else { | 
 |           std::string result = slistener.str(); | 
 |           if (!result.empty()) { | 
 |             no_match_result += ", and "; | 
 |             no_match_result += result; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Otherwise we need to explain why *both* of them fail. | 
 |     *listener << no_match_result; | 
 |     return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   const std::vector<Matcher<T> > matchers_; | 
 | }; | 
 |  | 
 | // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). | 
 | template <typename... Args> | 
 | using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; | 
 |  | 
 | // Wrapper for implementation of Any/AllOfArray(). | 
 | template <template <class> class MatcherImpl, typename T> | 
 | class SomeOfArrayMatcher { | 
 |  public: | 
 |   // Constructs the matcher from a sequence of element values or | 
 |   // element matchers. | 
 |   template <typename Iter> | 
 |   SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} | 
 |  | 
 |   template <typename U> | 
 |   operator Matcher<U>() const {  // NOLINT | 
 |     using RawU = typename std::decay<U>::type; | 
 |     std::vector<Matcher<RawU>> matchers; | 
 |     for (const auto& matcher : matchers_) { | 
 |       matchers.push_back(MatcherCast<RawU>(matcher)); | 
 |     } | 
 |     return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); | 
 |   } | 
 |  | 
 |  private: | 
 |   const ::std::vector<T> matchers_; | 
 | }; | 
 |  | 
 | template <typename T> | 
 | using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; | 
 |  | 
 | template <typename T> | 
 | using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; | 
 |  | 
 | // Used for implementing Truly(pred), which turns a predicate into a | 
 | // matcher. | 
 | template <typename Predicate> | 
 | class TrulyMatcher { | 
 |  public: | 
 |   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} | 
 |  | 
 |   // This method template allows Truly(pred) to be used as a matcher | 
 |   // for type T where T is the argument type of predicate 'pred'.  The | 
 |   // argument is passed by reference as the predicate may be | 
 |   // interested in the address of the argument. | 
 |   template <typename T> | 
 |   bool MatchAndExplain(T& x,  // NOLINT | 
 |                        MatchResultListener* listener) const { | 
 |     // Without the if-statement, MSVC sometimes warns about converting | 
 |     // a value to bool (warning 4800). | 
 |     // | 
 |     // We cannot write 'return !!predicate_(x);' as that doesn't work | 
 |     // when predicate_(x) returns a class convertible to bool but | 
 |     // having no operator!(). | 
 |     if (predicate_(x)) | 
 |       return true; | 
 |     *listener << "didn't satisfy the given predicate"; | 
 |     return false; | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "satisfies the given predicate"; | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "doesn't satisfy the given predicate"; | 
 |   } | 
 |  | 
 |  private: | 
 |   Predicate predicate_; | 
 | }; | 
 |  | 
 | // Used for implementing Matches(matcher), which turns a matcher into | 
 | // a predicate. | 
 | template <typename M> | 
 | class MatcherAsPredicate { | 
 |  public: | 
 |   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} | 
 |  | 
 |   // This template operator() allows Matches(m) to be used as a | 
 |   // predicate on type T where m is a matcher on type T. | 
 |   // | 
 |   // The argument x is passed by reference instead of by value, as | 
 |   // some matcher may be interested in its address (e.g. as in | 
 |   // Matches(Ref(n))(x)). | 
 |   template <typename T> | 
 |   bool operator()(const T& x) const { | 
 |     // We let matcher_ commit to a particular type here instead of | 
 |     // when the MatcherAsPredicate object was constructed.  This | 
 |     // allows us to write Matches(m) where m is a polymorphic matcher | 
 |     // (e.g. Eq(5)). | 
 |     // | 
 |     // If we write Matcher<T>(matcher_).Matches(x) here, it won't | 
 |     // compile when matcher_ has type Matcher<const T&>; if we write | 
 |     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile | 
 |     // when matcher_ has type Matcher<T>; if we just write | 
 |     // matcher_.Matches(x), it won't compile when matcher_ is | 
 |     // polymorphic, e.g. Eq(5). | 
 |     // | 
 |     // MatcherCast<const T&>() is necessary for making the code work | 
 |     // in all of the above situations. | 
 |     return MatcherCast<const T&>(matcher_).Matches(x); | 
 |   } | 
 |  | 
 |  private: | 
 |   M matcher_; | 
 | }; | 
 |  | 
 | // For implementing ASSERT_THAT() and EXPECT_THAT().  The template | 
 | // argument M must be a type that can be converted to a matcher. | 
 | template <typename M> | 
 | class PredicateFormatterFromMatcher { | 
 |  public: | 
 |   explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} | 
 |  | 
 |   // This template () operator allows a PredicateFormatterFromMatcher | 
 |   // object to act as a predicate-formatter suitable for using with | 
 |   // Google Test's EXPECT_PRED_FORMAT1() macro. | 
 |   template <typename T> | 
 |   AssertionResult operator()(const char* value_text, const T& x) const { | 
 |     // We convert matcher_ to a Matcher<const T&> *now* instead of | 
 |     // when the PredicateFormatterFromMatcher object was constructed, | 
 |     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't | 
 |     // know which type to instantiate it to until we actually see the | 
 |     // type of x here. | 
 |     // | 
 |     // We write SafeMatcherCast<const T&>(matcher_) instead of | 
 |     // Matcher<const T&>(matcher_), as the latter won't compile when | 
 |     // matcher_ has type Matcher<T> (e.g. An<int>()). | 
 |     // We don't write MatcherCast<const T&> either, as that allows | 
 |     // potentially unsafe downcasting of the matcher argument. | 
 |     const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); | 
 |  | 
 |     // The expected path here is that the matcher should match (i.e. that most | 
 |     // tests pass) so optimize for this case. | 
 |     if (matcher.Matches(x)) { | 
 |       return AssertionSuccess(); | 
 |     } | 
 |  | 
 |     ::std::stringstream ss; | 
 |     ss << "Value of: " << value_text << "\n" | 
 |        << "Expected: "; | 
 |     matcher.DescribeTo(&ss); | 
 |  | 
 |     // Rerun the matcher to "PrintAndExplain" the failure. | 
 |     StringMatchResultListener listener; | 
 |     if (MatchPrintAndExplain(x, matcher, &listener)) { | 
 |       ss << "\n  The matcher failed on the initial attempt; but passed when " | 
 |             "rerun to generate the explanation."; | 
 |     } | 
 |     ss << "\n  Actual: " << listener.str(); | 
 |     return AssertionFailure() << ss.str(); | 
 |   } | 
 |  | 
 |  private: | 
 |   const M matcher_; | 
 | }; | 
 |  | 
 | // A helper function for converting a matcher to a predicate-formatter | 
 | // without the user needing to explicitly write the type.  This is | 
 | // used for implementing ASSERT_THAT() and EXPECT_THAT(). | 
 | // Implementation detail: 'matcher' is received by-value to force decaying. | 
 | template <typename M> | 
 | inline PredicateFormatterFromMatcher<M> | 
 | MakePredicateFormatterFromMatcher(M matcher) { | 
 |   return PredicateFormatterFromMatcher<M>(std::move(matcher)); | 
 | } | 
 |  | 
 | // Implements the polymorphic IsNan() matcher, which matches any floating type | 
 | // value that is Nan. | 
 | class IsNanMatcher { | 
 |  public: | 
 |   template <typename FloatType> | 
 |   bool MatchAndExplain(const FloatType& f, | 
 |                        MatchResultListener* /* listener */) const { | 
 |     return (::std::isnan)(f); | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { *os << "is NaN"; } | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "isn't NaN"; | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the polymorphic floating point equality matcher, which matches | 
 | // two float values using ULP-based approximation or, optionally, a | 
 | // user-specified epsilon.  The template is meant to be instantiated with | 
 | // FloatType being either float or double. | 
 | template <typename FloatType> | 
 | class FloatingEqMatcher { | 
 |  public: | 
 |   // Constructor for FloatingEqMatcher. | 
 |   // The matcher's input will be compared with expected.  The matcher treats two | 
 |   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards, | 
 |   // equality comparisons between NANs will always return false.  We specify a | 
 |   // negative max_abs_error_ term to indicate that ULP-based approximation will | 
 |   // be used for comparison. | 
 |   FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : | 
 |     expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { | 
 |   } | 
 |  | 
 |   // Constructor that supports a user-specified max_abs_error that will be used | 
 |   // for comparison instead of ULP-based approximation.  The max absolute | 
 |   // should be non-negative. | 
 |   FloatingEqMatcher(FloatType expected, bool nan_eq_nan, | 
 |                     FloatType max_abs_error) | 
 |       : expected_(expected), | 
 |         nan_eq_nan_(nan_eq_nan), | 
 |         max_abs_error_(max_abs_error) { | 
 |     GTEST_CHECK_(max_abs_error >= 0) | 
 |         << ", where max_abs_error is" << max_abs_error; | 
 |   } | 
 |  | 
 |   // Implements floating point equality matcher as a Matcher<T>. | 
 |   template <typename T> | 
 |   class Impl : public MatcherInterface<T> { | 
 |    public: | 
 |     Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) | 
 |         : expected_(expected), | 
 |           nan_eq_nan_(nan_eq_nan), | 
 |           max_abs_error_(max_abs_error) {} | 
 |  | 
 |     bool MatchAndExplain(T value, | 
 |                          MatchResultListener* listener) const override { | 
 |       const FloatingPoint<FloatType> actual(value), expected(expected_); | 
 |  | 
 |       // Compares NaNs first, if nan_eq_nan_ is true. | 
 |       if (actual.is_nan() || expected.is_nan()) { | 
 |         if (actual.is_nan() && expected.is_nan()) { | 
 |           return nan_eq_nan_; | 
 |         } | 
 |         // One is nan; the other is not nan. | 
 |         return false; | 
 |       } | 
 |       if (HasMaxAbsError()) { | 
 |         // We perform an equality check so that inf will match inf, regardless | 
 |         // of error bounds.  If the result of value - expected_ would result in | 
 |         // overflow or if either value is inf, the default result is infinity, | 
 |         // which should only match if max_abs_error_ is also infinity. | 
 |         if (value == expected_) { | 
 |           return true; | 
 |         } | 
 |  | 
 |         const FloatType diff = value - expected_; | 
 |         if (::std::fabs(diff) <= max_abs_error_) { | 
 |           return true; | 
 |         } | 
 |  | 
 |         if (listener->IsInterested()) { | 
 |           *listener << "which is " << diff << " from " << expected_; | 
 |         } | 
 |         return false; | 
 |       } else { | 
 |         return actual.AlmostEquals(expected); | 
 |       } | 
 |     } | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       // os->precision() returns the previously set precision, which we | 
 |       // store to restore the ostream to its original configuration | 
 |       // after outputting. | 
 |       const ::std::streamsize old_precision = os->precision( | 
 |           ::std::numeric_limits<FloatType>::digits10 + 2); | 
 |       if (FloatingPoint<FloatType>(expected_).is_nan()) { | 
 |         if (nan_eq_nan_) { | 
 |           *os << "is NaN"; | 
 |         } else { | 
 |           *os << "never matches"; | 
 |         } | 
 |       } else { | 
 |         *os << "is approximately " << expected_; | 
 |         if (HasMaxAbsError()) { | 
 |           *os << " (absolute error <= " << max_abs_error_ << ")"; | 
 |         } | 
 |       } | 
 |       os->precision(old_precision); | 
 |     } | 
 |  | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       // As before, get original precision. | 
 |       const ::std::streamsize old_precision = os->precision( | 
 |           ::std::numeric_limits<FloatType>::digits10 + 2); | 
 |       if (FloatingPoint<FloatType>(expected_).is_nan()) { | 
 |         if (nan_eq_nan_) { | 
 |           *os << "isn't NaN"; | 
 |         } else { | 
 |           *os << "is anything"; | 
 |         } | 
 |       } else { | 
 |         *os << "isn't approximately " << expected_; | 
 |         if (HasMaxAbsError()) { | 
 |           *os << " (absolute error > " << max_abs_error_ << ")"; | 
 |         } | 
 |       } | 
 |       // Restore original precision. | 
 |       os->precision(old_precision); | 
 |     } | 
 |  | 
 |    private: | 
 |     bool HasMaxAbsError() const { | 
 |       return max_abs_error_ >= 0; | 
 |     } | 
 |  | 
 |     const FloatType expected_; | 
 |     const bool nan_eq_nan_; | 
 |     // max_abs_error will be used for value comparison when >= 0. | 
 |     const FloatType max_abs_error_; | 
 |   }; | 
 |  | 
 |   // The following 3 type conversion operators allow FloatEq(expected) and | 
 |   // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a | 
 |   // Matcher<const float&>, or a Matcher<float&>, but nothing else. | 
 |   operator Matcher<FloatType>() const { | 
 |     return MakeMatcher( | 
 |         new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); | 
 |   } | 
 |  | 
 |   operator Matcher<const FloatType&>() const { | 
 |     return MakeMatcher( | 
 |         new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); | 
 |   } | 
 |  | 
 |   operator Matcher<FloatType&>() const { | 
 |     return MakeMatcher( | 
 |         new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   const FloatType expected_; | 
 |   const bool nan_eq_nan_; | 
 |   // max_abs_error will be used for value comparison when >= 0. | 
 |   const FloatType max_abs_error_; | 
 | }; | 
 |  | 
 | // A 2-tuple ("binary") wrapper around FloatingEqMatcher: | 
 | // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) | 
 | // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) | 
 | // against y. The former implements "Eq", the latter "Near". At present, there | 
 | // is no version that compares NaNs as equal. | 
 | template <typename FloatType> | 
 | class FloatingEq2Matcher { | 
 |  public: | 
 |   FloatingEq2Matcher() { Init(-1, false); } | 
 |  | 
 |   explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } | 
 |  | 
 |   explicit FloatingEq2Matcher(FloatType max_abs_error) { | 
 |     Init(max_abs_error, false); | 
 |   } | 
 |  | 
 |   FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { | 
 |     Init(max_abs_error, nan_eq_nan); | 
 |   } | 
 |  | 
 |   template <typename T1, typename T2> | 
 |   operator Matcher<::std::tuple<T1, T2>>() const { | 
 |     return MakeMatcher( | 
 |         new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); | 
 |   } | 
 |   template <typename T1, typename T2> | 
 |   operator Matcher<const ::std::tuple<T1, T2>&>() const { | 
 |     return MakeMatcher( | 
 |         new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT | 
 |     return os << "an almost-equal pair"; | 
 |   } | 
 |  | 
 |   template <typename Tuple> | 
 |   class Impl : public MatcherInterface<Tuple> { | 
 |    public: | 
 |     Impl(FloatType max_abs_error, bool nan_eq_nan) : | 
 |         max_abs_error_(max_abs_error), | 
 |         nan_eq_nan_(nan_eq_nan) {} | 
 |  | 
 |     bool MatchAndExplain(Tuple args, | 
 |                          MatchResultListener* listener) const override { | 
 |       if (max_abs_error_ == -1) { | 
 |         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); | 
 |         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( | 
 |             ::std::get<1>(args), listener); | 
 |       } else { | 
 |         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, | 
 |                                         max_abs_error_); | 
 |         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( | 
 |             ::std::get<1>(args), listener); | 
 |       } | 
 |     } | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "are " << GetDesc; | 
 |     } | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       *os << "aren't " << GetDesc; | 
 |     } | 
 |  | 
 |    private: | 
 |     FloatType max_abs_error_; | 
 |     const bool nan_eq_nan_; | 
 |   }; | 
 |  | 
 |   void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { | 
 |     max_abs_error_ = max_abs_error_val; | 
 |     nan_eq_nan_ = nan_eq_nan_val; | 
 |   } | 
 |   FloatType max_abs_error_; | 
 |   bool nan_eq_nan_; | 
 | }; | 
 |  | 
 | // Implements the Pointee(m) matcher for matching a pointer whose | 
 | // pointee matches matcher m.  The pointer can be either raw or smart. | 
 | template <typename InnerMatcher> | 
 | class PointeeMatcher { | 
 |  public: | 
 |   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} | 
 |  | 
 |   // This type conversion operator template allows Pointee(m) to be | 
 |   // used as a matcher for any pointer type whose pointee type is | 
 |   // compatible with the inner matcher, where type Pointer can be | 
 |   // either a raw pointer or a smart pointer. | 
 |   // | 
 |   // The reason we do this instead of relying on | 
 |   // MakePolymorphicMatcher() is that the latter is not flexible | 
 |   // enough for implementing the DescribeTo() method of Pointee(). | 
 |   template <typename Pointer> | 
 |   operator Matcher<Pointer>() const { | 
 |     return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // The monomorphic implementation that works for a particular pointer type. | 
 |   template <typename Pointer> | 
 |   class Impl : public MatcherInterface<Pointer> { | 
 |    public: | 
 |     using Pointee = | 
 |         typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( | 
 |             Pointer)>::element_type; | 
 |  | 
 |     explicit Impl(const InnerMatcher& matcher) | 
 |         : matcher_(MatcherCast<const Pointee&>(matcher)) {} | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "points to a value that "; | 
 |       matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       *os << "does not point to a value that "; | 
 |       matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     bool MatchAndExplain(Pointer pointer, | 
 |                          MatchResultListener* listener) const override { | 
 |       if (GetRawPointer(pointer) == nullptr) return false; | 
 |  | 
 |       *listener << "which points to "; | 
 |       return MatchPrintAndExplain(*pointer, matcher_, listener); | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<const Pointee&> matcher_; | 
 |   }; | 
 |  | 
 |   const InnerMatcher matcher_; | 
 | }; | 
 |  | 
 | // Implements the Pointer(m) matcher | 
 | // Implements the Pointer(m) matcher for matching a pointer that matches matcher | 
 | // m.  The pointer can be either raw or smart, and will match `m` against the | 
 | // raw pointer. | 
 | template <typename InnerMatcher> | 
 | class PointerMatcher { | 
 |  public: | 
 |   explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} | 
 |  | 
 |   // This type conversion operator template allows Pointer(m) to be | 
 |   // used as a matcher for any pointer type whose pointer type is | 
 |   // compatible with the inner matcher, where type PointerType can be | 
 |   // either a raw pointer or a smart pointer. | 
 |   // | 
 |   // The reason we do this instead of relying on | 
 |   // MakePolymorphicMatcher() is that the latter is not flexible | 
 |   // enough for implementing the DescribeTo() method of Pointer(). | 
 |   template <typename PointerType> | 
 |   operator Matcher<PointerType>() const {  // NOLINT | 
 |     return Matcher<PointerType>(new Impl<const PointerType&>(matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // The monomorphic implementation that works for a particular pointer type. | 
 |   template <typename PointerType> | 
 |   class Impl : public MatcherInterface<PointerType> { | 
 |    public: | 
 |     using Pointer = | 
 |         const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( | 
 |             PointerType)>::element_type*; | 
 |  | 
 |     explicit Impl(const InnerMatcher& matcher) | 
 |         : matcher_(MatcherCast<Pointer>(matcher)) {} | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "is a pointer that "; | 
 |       matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       *os << "is not a pointer that "; | 
 |       matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     bool MatchAndExplain(PointerType pointer, | 
 |                          MatchResultListener* listener) const override { | 
 |       *listener << "which is a pointer that "; | 
 |       Pointer p = GetRawPointer(pointer); | 
 |       return MatchPrintAndExplain(p, matcher_, listener); | 
 |     } | 
 |  | 
 |    private: | 
 |     Matcher<Pointer> matcher_; | 
 |   }; | 
 |  | 
 |   const InnerMatcher matcher_; | 
 | }; | 
 |  | 
 | #if GTEST_HAS_RTTI | 
 | // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or | 
 | // reference that matches inner_matcher when dynamic_cast<T> is applied. | 
 | // The result of dynamic_cast<To> is forwarded to the inner matcher. | 
 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. | 
 | // If To is a reference and the cast fails, this matcher returns false | 
 | // immediately. | 
 | template <typename To> | 
 | class WhenDynamicCastToMatcherBase { | 
 |  public: | 
 |   explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) | 
 |       : matcher_(matcher) {} | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     GetCastTypeDescription(os); | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     GetCastTypeDescription(os); | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |  protected: | 
 |   const Matcher<To> matcher_; | 
 |  | 
 |   static std::string GetToName() { | 
 |     return GetTypeName<To>(); | 
 |   } | 
 |  | 
 |  private: | 
 |   static void GetCastTypeDescription(::std::ostream* os) { | 
 |     *os << "when dynamic_cast to " << GetToName() << ", "; | 
 |   } | 
 | }; | 
 |  | 
 | // Primary template. | 
 | // To is a pointer. Cast and forward the result. | 
 | template <typename To> | 
 | class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { | 
 |  public: | 
 |   explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) | 
 |       : WhenDynamicCastToMatcherBase<To>(matcher) {} | 
 |  | 
 |   template <typename From> | 
 |   bool MatchAndExplain(From from, MatchResultListener* listener) const { | 
 |     To to = dynamic_cast<To>(from); | 
 |     return MatchPrintAndExplain(to, this->matcher_, listener); | 
 |   } | 
 | }; | 
 |  | 
 | // Specialize for references. | 
 | // In this case we return false if the dynamic_cast fails. | 
 | template <typename To> | 
 | class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { | 
 |  public: | 
 |   explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) | 
 |       : WhenDynamicCastToMatcherBase<To&>(matcher) {} | 
 |  | 
 |   template <typename From> | 
 |   bool MatchAndExplain(From& from, MatchResultListener* listener) const { | 
 |     // We don't want an std::bad_cast here, so do the cast with pointers. | 
 |     To* to = dynamic_cast<To*>(&from); | 
 |     if (to == nullptr) { | 
 |       *listener << "which cannot be dynamic_cast to " << this->GetToName(); | 
 |       return false; | 
 |     } | 
 |     return MatchPrintAndExplain(*to, this->matcher_, listener); | 
 |   } | 
 | }; | 
 | #endif  // GTEST_HAS_RTTI | 
 |  | 
 | // Implements the Field() matcher for matching a field (i.e. member | 
 | // variable) of an object. | 
 | template <typename Class, typename FieldType> | 
 | class FieldMatcher { | 
 |  public: | 
 |   FieldMatcher(FieldType Class::*field, | 
 |                const Matcher<const FieldType&>& matcher) | 
 |       : field_(field), matcher_(matcher), whose_field_("whose given field ") {} | 
 |  | 
 |   FieldMatcher(const std::string& field_name, FieldType Class::*field, | 
 |                const Matcher<const FieldType&>& matcher) | 
 |       : field_(field), | 
 |         matcher_(matcher), | 
 |         whose_field_("whose field `" + field_name + "` ") {} | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "is an object " << whose_field_; | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "is an object " << whose_field_; | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   template <typename T> | 
 |   bool MatchAndExplain(const T& value, MatchResultListener* listener) const { | 
 |     // FIXME: The dispatch on std::is_pointer was introduced as a workaround for | 
 |     // a compiler bug, and can now be removed. | 
 |     return MatchAndExplainImpl( | 
 |         typename std::is_pointer<typename std::remove_const<T>::type>::type(), | 
 |         value, listener); | 
 |   } | 
 |  | 
 |  private: | 
 |   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, | 
 |                            const Class& obj, | 
 |                            MatchResultListener* listener) const { | 
 |     *listener << whose_field_ << "is "; | 
 |     return MatchPrintAndExplain(obj.*field_, matcher_, listener); | 
 |   } | 
 |  | 
 |   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, | 
 |                            MatchResultListener* listener) const { | 
 |     if (p == nullptr) return false; | 
 |  | 
 |     *listener << "which points to an object "; | 
 |     // Since *p has a field, it must be a class/struct/union type and | 
 |     // thus cannot be a pointer.  Therefore we pass false_type() as | 
 |     // the first argument. | 
 |     return MatchAndExplainImpl(std::false_type(), *p, listener); | 
 |   } | 
 |  | 
 |   const FieldType Class::*field_; | 
 |   const Matcher<const FieldType&> matcher_; | 
 |  | 
 |   // Contains either "whose given field " if the name of the field is unknown | 
 |   // or "whose field `name_of_field` " if the name is known. | 
 |   const std::string whose_field_; | 
 | }; | 
 |  | 
 | // Implements the Property() matcher for matching a property | 
 | // (i.e. return value of a getter method) of an object. | 
 | // | 
 | // Property is a const-qualified member function of Class returning | 
 | // PropertyType. | 
 | template <typename Class, typename PropertyType, typename Property> | 
 | class PropertyMatcher { | 
 |  public: | 
 |   typedef const PropertyType& RefToConstProperty; | 
 |  | 
 |   PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) | 
 |       : property_(property), | 
 |         matcher_(matcher), | 
 |         whose_property_("whose given property ") {} | 
 |  | 
 |   PropertyMatcher(const std::string& property_name, Property property, | 
 |                   const Matcher<RefToConstProperty>& matcher) | 
 |       : property_(property), | 
 |         matcher_(matcher), | 
 |         whose_property_("whose property `" + property_name + "` ") {} | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "is an object " << whose_property_; | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "is an object " << whose_property_; | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   template <typename T> | 
 |   bool MatchAndExplain(const T&value, MatchResultListener* listener) const { | 
 |     return MatchAndExplainImpl( | 
 |         typename std::is_pointer<typename std::remove_const<T>::type>::type(), | 
 |         value, listener); | 
 |   } | 
 |  | 
 |  private: | 
 |   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, | 
 |                            const Class& obj, | 
 |                            MatchResultListener* listener) const { | 
 |     *listener << whose_property_ << "is "; | 
 |     // Cannot pass the return value (for example, int) to MatchPrintAndExplain, | 
 |     // which takes a non-const reference as argument. | 
 |     RefToConstProperty result = (obj.*property_)(); | 
 |     return MatchPrintAndExplain(result, matcher_, listener); | 
 |   } | 
 |  | 
 |   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, | 
 |                            MatchResultListener* listener) const { | 
 |     if (p == nullptr) return false; | 
 |  | 
 |     *listener << "which points to an object "; | 
 |     // Since *p has a property method, it must be a class/struct/union | 
 |     // type and thus cannot be a pointer.  Therefore we pass | 
 |     // false_type() as the first argument. | 
 |     return MatchAndExplainImpl(std::false_type(), *p, listener); | 
 |   } | 
 |  | 
 |   Property property_; | 
 |   const Matcher<RefToConstProperty> matcher_; | 
 |  | 
 |   // Contains either "whose given property " if the name of the property is | 
 |   // unknown or "whose property `name_of_property` " if the name is known. | 
 |   const std::string whose_property_; | 
 | }; | 
 |  | 
 | // Type traits specifying various features of different functors for ResultOf. | 
 | // The default template specifies features for functor objects. | 
 | template <typename Functor> | 
 | struct CallableTraits { | 
 |   typedef Functor StorageType; | 
 |  | 
 |   static void CheckIsValid(Functor /* functor */) {} | 
 |  | 
 |   template <typename T> | 
 |   static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) { | 
 |     return f(arg); | 
 |   } | 
 | }; | 
 |  | 
 | // Specialization for function pointers. | 
 | template <typename ArgType, typename ResType> | 
 | struct CallableTraits<ResType(*)(ArgType)> { | 
 |   typedef ResType ResultType; | 
 |   typedef ResType(*StorageType)(ArgType); | 
 |  | 
 |   static void CheckIsValid(ResType(*f)(ArgType)) { | 
 |     GTEST_CHECK_(f != nullptr) | 
 |         << "NULL function pointer is passed into ResultOf()."; | 
 |   } | 
 |   template <typename T> | 
 |   static ResType Invoke(ResType(*f)(ArgType), T arg) { | 
 |     return (*f)(arg); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the ResultOf() matcher for matching a return value of a | 
 | // unary function of an object. | 
 | template <typename Callable, typename InnerMatcher> | 
 | class ResultOfMatcher { | 
 |  public: | 
 |   ResultOfMatcher(Callable callable, InnerMatcher matcher) | 
 |       : callable_(std::move(callable)), matcher_(std::move(matcher)) { | 
 |     CallableTraits<Callable>::CheckIsValid(callable_); | 
 |   } | 
 |  | 
 |   template <typename T> | 
 |   operator Matcher<T>() const { | 
 |     return Matcher<T>(new Impl<const T&>(callable_, matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   typedef typename CallableTraits<Callable>::StorageType CallableStorageType; | 
 |  | 
 |   template <typename T> | 
 |   class Impl : public MatcherInterface<T> { | 
 |     using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( | 
 |         std::declval<CallableStorageType>(), std::declval<T>())); | 
 |  | 
 |    public: | 
 |     template <typename M> | 
 |     Impl(const CallableStorageType& callable, const M& matcher) | 
 |         : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {} | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "is mapped by the given callable to a value that "; | 
 |       matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       *os << "is mapped by the given callable to a value that "; | 
 |       matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     bool MatchAndExplain(T obj, MatchResultListener* listener) const override { | 
 |       *listener << "which is mapped by the given callable to "; | 
 |       // Cannot pass the return value directly to MatchPrintAndExplain, which | 
 |       // takes a non-const reference as argument. | 
 |       // Also, specifying template argument explicitly is needed because T could | 
 |       // be a non-const reference (e.g. Matcher<Uncopyable&>). | 
 |       ResultType result = | 
 |           CallableTraits<Callable>::template Invoke<T>(callable_, obj); | 
 |       return MatchPrintAndExplain(result, matcher_, listener); | 
 |     } | 
 |  | 
 |    private: | 
 |     // Functors often define operator() as non-const method even though | 
 |     // they are actually stateless. But we need to use them even when | 
 |     // 'this' is a const pointer. It's the user's responsibility not to | 
 |     // use stateful callables with ResultOf(), which doesn't guarantee | 
 |     // how many times the callable will be invoked. | 
 |     mutable CallableStorageType callable_; | 
 |     const Matcher<ResultType> matcher_; | 
 |   };  // class Impl | 
 |  | 
 |   const CallableStorageType callable_; | 
 |   const InnerMatcher matcher_; | 
 | }; | 
 |  | 
 | // Implements a matcher that checks the size of an STL-style container. | 
 | template <typename SizeMatcher> | 
 | class SizeIsMatcher { | 
 |  public: | 
 |   explicit SizeIsMatcher(const SizeMatcher& size_matcher) | 
 |        : size_matcher_(size_matcher) { | 
 |   } | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     return Matcher<Container>(new Impl<const Container&>(size_matcher_)); | 
 |   } | 
 |  | 
 |   template <typename Container> | 
 |   class Impl : public MatcherInterface<Container> { | 
 |    public: | 
 |     using SizeType = decltype(std::declval<Container>().size()); | 
 |     explicit Impl(const SizeMatcher& size_matcher) | 
 |         : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "size "; | 
 |       size_matcher_.DescribeTo(os); | 
 |     } | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       *os << "size "; | 
 |       size_matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     bool MatchAndExplain(Container container, | 
 |                          MatchResultListener* listener) const override { | 
 |       SizeType size = container.size(); | 
 |       StringMatchResultListener size_listener; | 
 |       const bool result = size_matcher_.MatchAndExplain(size, &size_listener); | 
 |       *listener | 
 |           << "whose size " << size << (result ? " matches" : " doesn't match"); | 
 |       PrintIfNotEmpty(size_listener.str(), listener->stream()); | 
 |       return result; | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<SizeType> size_matcher_; | 
 |   }; | 
 |  | 
 |  private: | 
 |   const SizeMatcher size_matcher_; | 
 | }; | 
 |  | 
 | // Implements a matcher that checks the begin()..end() distance of an STL-style | 
 | // container. | 
 | template <typename DistanceMatcher> | 
 | class BeginEndDistanceIsMatcher { | 
 |  public: | 
 |   explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) | 
 |       : distance_matcher_(distance_matcher) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); | 
 |   } | 
 |  | 
 |   template <typename Container> | 
 |   class Impl : public MatcherInterface<Container> { | 
 |    public: | 
 |     typedef internal::StlContainerView< | 
 |         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; | 
 |     typedef typename std::iterator_traits< | 
 |         typename ContainerView::type::const_iterator>::difference_type | 
 |         DistanceType; | 
 |     explicit Impl(const DistanceMatcher& distance_matcher) | 
 |         : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "distance between begin() and end() "; | 
 |       distance_matcher_.DescribeTo(os); | 
 |     } | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       *os << "distance between begin() and end() "; | 
 |       distance_matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     bool MatchAndExplain(Container container, | 
 |                          MatchResultListener* listener) const override { | 
 |       using std::begin; | 
 |       using std::end; | 
 |       DistanceType distance = std::distance(begin(container), end(container)); | 
 |       StringMatchResultListener distance_listener; | 
 |       const bool result = | 
 |           distance_matcher_.MatchAndExplain(distance, &distance_listener); | 
 |       *listener << "whose distance between begin() and end() " << distance | 
 |                 << (result ? " matches" : " doesn't match"); | 
 |       PrintIfNotEmpty(distance_listener.str(), listener->stream()); | 
 |       return result; | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<DistanceType> distance_matcher_; | 
 |   }; | 
 |  | 
 |  private: | 
 |   const DistanceMatcher distance_matcher_; | 
 | }; | 
 |  | 
 | // Implements an equality matcher for any STL-style container whose elements | 
 | // support ==. This matcher is like Eq(), but its failure explanations provide | 
 | // more detailed information that is useful when the container is used as a set. | 
 | // The failure message reports elements that are in one of the operands but not | 
 | // the other. The failure messages do not report duplicate or out-of-order | 
 | // elements in the containers (which don't properly matter to sets, but can | 
 | // occur if the containers are vectors or lists, for example). | 
 | // | 
 | // Uses the container's const_iterator, value_type, operator ==, | 
 | // begin(), and end(). | 
 | template <typename Container> | 
 | class ContainerEqMatcher { | 
 |  public: | 
 |   typedef internal::StlContainerView<Container> View; | 
 |   typedef typename View::type StlContainer; | 
 |   typedef typename View::const_reference StlContainerReference; | 
 |  | 
 |   static_assert(!std::is_const<Container>::value, | 
 |                 "Container type must not be const"); | 
 |   static_assert(!std::is_reference<Container>::value, | 
 |                 "Container type must not be a reference"); | 
 |  | 
 |   // We make a copy of expected in case the elements in it are modified | 
 |   // after this matcher is created. | 
 |   explicit ContainerEqMatcher(const Container& expected) | 
 |       : expected_(View::Copy(expected)) {} | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "equals "; | 
 |     UniversalPrint(expected_, os); | 
 |   } | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "does not equal "; | 
 |     UniversalPrint(expected_, os); | 
 |   } | 
 |  | 
 |   template <typename LhsContainer> | 
 |   bool MatchAndExplain(const LhsContainer& lhs, | 
 |                        MatchResultListener* listener) const { | 
 |     typedef internal::StlContainerView< | 
 |         typename std::remove_const<LhsContainer>::type> | 
 |         LhsView; | 
 |     typedef typename LhsView::type LhsStlContainer; | 
 |     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); | 
 |     if (lhs_stl_container == expected_) | 
 |       return true; | 
 |  | 
 |     ::std::ostream* const os = listener->stream(); | 
 |     if (os != nullptr) { | 
 |       // Something is different. Check for extra values first. | 
 |       bool printed_header = false; | 
 |       for (typename LhsStlContainer::const_iterator it = | 
 |                lhs_stl_container.begin(); | 
 |            it != lhs_stl_container.end(); ++it) { | 
 |         if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == | 
 |             expected_.end()) { | 
 |           if (printed_header) { | 
 |             *os << ", "; | 
 |           } else { | 
 |             *os << "which has these unexpected elements: "; | 
 |             printed_header = true; | 
 |           } | 
 |           UniversalPrint(*it, os); | 
 |         } | 
 |       } | 
 |  | 
 |       // Now check for missing values. | 
 |       bool printed_header2 = false; | 
 |       for (typename StlContainer::const_iterator it = expected_.begin(); | 
 |            it != expected_.end(); ++it) { | 
 |         if (internal::ArrayAwareFind( | 
 |                 lhs_stl_container.begin(), lhs_stl_container.end(), *it) == | 
 |             lhs_stl_container.end()) { | 
 |           if (printed_header2) { | 
 |             *os << ", "; | 
 |           } else { | 
 |             *os << (printed_header ? ",\nand" : "which") | 
 |                 << " doesn't have these expected elements: "; | 
 |             printed_header2 = true; | 
 |           } | 
 |           UniversalPrint(*it, os); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   const StlContainer expected_; | 
 | }; | 
 |  | 
 | // A comparator functor that uses the < operator to compare two values. | 
 | struct LessComparator { | 
 |   template <typename T, typename U> | 
 |   bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } | 
 | }; | 
 |  | 
 | // Implements WhenSortedBy(comparator, container_matcher). | 
 | template <typename Comparator, typename ContainerMatcher> | 
 | class WhenSortedByMatcher { | 
 |  public: | 
 |   WhenSortedByMatcher(const Comparator& comparator, | 
 |                       const ContainerMatcher& matcher) | 
 |       : comparator_(comparator), matcher_(matcher) {} | 
 |  | 
 |   template <typename LhsContainer> | 
 |   operator Matcher<LhsContainer>() const { | 
 |     return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); | 
 |   } | 
 |  | 
 |   template <typename LhsContainer> | 
 |   class Impl : public MatcherInterface<LhsContainer> { | 
 |    public: | 
 |     typedef internal::StlContainerView< | 
 |          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; | 
 |     typedef typename LhsView::type LhsStlContainer; | 
 |     typedef typename LhsView::const_reference LhsStlContainerReference; | 
 |     // Transforms std::pair<const Key, Value> into std::pair<Key, Value> | 
 |     // so that we can match associative containers. | 
 |     typedef typename RemoveConstFromKey< | 
 |         typename LhsStlContainer::value_type>::type LhsValue; | 
 |  | 
 |     Impl(const Comparator& comparator, const ContainerMatcher& matcher) | 
 |         : comparator_(comparator), matcher_(matcher) {} | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "(when sorted) "; | 
 |       matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       *os << "(when sorted) "; | 
 |       matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     bool MatchAndExplain(LhsContainer lhs, | 
 |                          MatchResultListener* listener) const override { | 
 |       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); | 
 |       ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), | 
 |                                                lhs_stl_container.end()); | 
 |       ::std::sort( | 
 |            sorted_container.begin(), sorted_container.end(), comparator_); | 
 |  | 
 |       if (!listener->IsInterested()) { | 
 |         // If the listener is not interested, we do not need to | 
 |         // construct the inner explanation. | 
 |         return matcher_.Matches(sorted_container); | 
 |       } | 
 |  | 
 |       *listener << "which is "; | 
 |       UniversalPrint(sorted_container, listener->stream()); | 
 |       *listener << " when sorted"; | 
 |  | 
 |       StringMatchResultListener inner_listener; | 
 |       const bool match = matcher_.MatchAndExplain(sorted_container, | 
 |                                                   &inner_listener); | 
 |       PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
 |       return match; | 
 |     } | 
 |  | 
 |    private: | 
 |     const Comparator comparator_; | 
 |     const Matcher<const ::std::vector<LhsValue>&> matcher_; | 
 |  | 
 |     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |  private: | 
 |   const Comparator comparator_; | 
 |   const ContainerMatcher matcher_; | 
 | }; | 
 |  | 
 | // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher | 
 | // must be able to be safely cast to Matcher<std::tuple<const T1&, const | 
 | // T2&> >, where T1 and T2 are the types of elements in the LHS | 
 | // container and the RHS container respectively. | 
 | template <typename TupleMatcher, typename RhsContainer> | 
 | class PointwiseMatcher { | 
 |   GTEST_COMPILE_ASSERT_( | 
 |       !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, | 
 |       use_UnorderedPointwise_with_hash_tables); | 
 |  | 
 |  public: | 
 |   typedef internal::StlContainerView<RhsContainer> RhsView; | 
 |   typedef typename RhsView::type RhsStlContainer; | 
 |   typedef typename RhsStlContainer::value_type RhsValue; | 
 |  | 
 |   static_assert(!std::is_const<RhsContainer>::value, | 
 |                 "RhsContainer type must not be const"); | 
 |   static_assert(!std::is_reference<RhsContainer>::value, | 
 |                 "RhsContainer type must not be a reference"); | 
 |  | 
 |   // Like ContainerEq, we make a copy of rhs in case the elements in | 
 |   // it are modified after this matcher is created. | 
 |   PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) | 
 |       : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {} | 
 |  | 
 |   template <typename LhsContainer> | 
 |   operator Matcher<LhsContainer>() const { | 
 |     GTEST_COMPILE_ASSERT_( | 
 |         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, | 
 |         use_UnorderedPointwise_with_hash_tables); | 
 |  | 
 |     return Matcher<LhsContainer>( | 
 |         new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); | 
 |   } | 
 |  | 
 |   template <typename LhsContainer> | 
 |   class Impl : public MatcherInterface<LhsContainer> { | 
 |    public: | 
 |     typedef internal::StlContainerView< | 
 |          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; | 
 |     typedef typename LhsView::type LhsStlContainer; | 
 |     typedef typename LhsView::const_reference LhsStlContainerReference; | 
 |     typedef typename LhsStlContainer::value_type LhsValue; | 
 |     // We pass the LHS value and the RHS value to the inner matcher by | 
 |     // reference, as they may be expensive to copy.  We must use tuple | 
 |     // instead of pair here, as a pair cannot hold references (C++ 98, | 
 |     // 20.2.2 [lib.pairs]). | 
 |     typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; | 
 |  | 
 |     Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) | 
 |         // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. | 
 |         : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), | 
 |           rhs_(rhs) {} | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "contains " << rhs_.size() | 
 |           << " values, where each value and its corresponding value in "; | 
 |       UniversalPrinter<RhsStlContainer>::Print(rhs_, os); | 
 |       *os << " "; | 
 |       mono_tuple_matcher_.DescribeTo(os); | 
 |     } | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       *os << "doesn't contain exactly " << rhs_.size() | 
 |           << " values, or contains a value x at some index i" | 
 |           << " where x and the i-th value of "; | 
 |       UniversalPrint(rhs_, os); | 
 |       *os << " "; | 
 |       mono_tuple_matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     bool MatchAndExplain(LhsContainer lhs, | 
 |                          MatchResultListener* listener) const override { | 
 |       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); | 
 |       const size_t actual_size = lhs_stl_container.size(); | 
 |       if (actual_size != rhs_.size()) { | 
 |         *listener << "which contains " << actual_size << " values"; | 
 |         return false; | 
 |       } | 
 |  | 
 |       typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); | 
 |       typename RhsStlContainer::const_iterator right = rhs_.begin(); | 
 |       for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { | 
 |         if (listener->IsInterested()) { | 
 |           StringMatchResultListener inner_listener; | 
 |           // Create InnerMatcherArg as a temporarily object to avoid it outlives | 
 |           // *left and *right. Dereference or the conversion to `const T&` may | 
 |           // return temp objects, e.g for vector<bool>. | 
 |           if (!mono_tuple_matcher_.MatchAndExplain( | 
 |                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), | 
 |                                   ImplicitCast_<const RhsValue&>(*right)), | 
 |                   &inner_listener)) { | 
 |             *listener << "where the value pair ("; | 
 |             UniversalPrint(*left, listener->stream()); | 
 |             *listener << ", "; | 
 |             UniversalPrint(*right, listener->stream()); | 
 |             *listener << ") at index #" << i << " don't match"; | 
 |             PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
 |             return false; | 
 |           } | 
 |         } else { | 
 |           if (!mono_tuple_matcher_.Matches( | 
 |                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), | 
 |                                   ImplicitCast_<const RhsValue&>(*right)))) | 
 |             return false; | 
 |         } | 
 |       } | 
 |  | 
 |       return true; | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<InnerMatcherArg> mono_tuple_matcher_; | 
 |     const RhsStlContainer rhs_; | 
 |   }; | 
 |  | 
 |  private: | 
 |   const TupleMatcher tuple_matcher_; | 
 |   const RhsStlContainer rhs_; | 
 | }; | 
 |  | 
 | // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. | 
 | template <typename Container> | 
 | class QuantifierMatcherImpl : public MatcherInterface<Container> { | 
 |  public: | 
 |   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
 |   typedef StlContainerView<RawContainer> View; | 
 |   typedef typename View::type StlContainer; | 
 |   typedef typename View::const_reference StlContainerReference; | 
 |   typedef typename StlContainer::value_type Element; | 
 |  | 
 |   template <typename InnerMatcher> | 
 |   explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) | 
 |       : inner_matcher_( | 
 |            testing::SafeMatcherCast<const Element&>(inner_matcher)) {} | 
 |  | 
 |   // Checks whether: | 
 |   // * All elements in the container match, if all_elements_should_match. | 
 |   // * Any element in the container matches, if !all_elements_should_match. | 
 |   bool MatchAndExplainImpl(bool all_elements_should_match, | 
 |                            Container container, | 
 |                            MatchResultListener* listener) const { | 
 |     StlContainerReference stl_container = View::ConstReference(container); | 
 |     size_t i = 0; | 
 |     for (typename StlContainer::const_iterator it = stl_container.begin(); | 
 |          it != stl_container.end(); ++it, ++i) { | 
 |       StringMatchResultListener inner_listener; | 
 |       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); | 
 |  | 
 |       if (matches != all_elements_should_match) { | 
 |         *listener << "whose element #" << i | 
 |                   << (matches ? " matches" : " doesn't match"); | 
 |         PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
 |         return !all_elements_should_match; | 
 |       } | 
 |     } | 
 |     return all_elements_should_match; | 
 |   } | 
 |  | 
 |  protected: | 
 |   const Matcher<const Element&> inner_matcher_; | 
 | }; | 
 |  | 
 | // Implements Contains(element_matcher) for the given argument type Container. | 
 | // Symmetric to EachMatcherImpl. | 
 | template <typename Container> | 
 | class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { | 
 |  public: | 
 |   template <typename InnerMatcher> | 
 |   explicit ContainsMatcherImpl(InnerMatcher inner_matcher) | 
 |       : QuantifierMatcherImpl<Container>(inner_matcher) {} | 
 |  | 
 |   // Describes what this matcher does. | 
 |   void DescribeTo(::std::ostream* os) const override { | 
 |     *os << "contains at least one element that "; | 
 |     this->inner_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const override { | 
 |     *os << "doesn't contain any element that "; | 
 |     this->inner_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   bool MatchAndExplain(Container container, | 
 |                        MatchResultListener* listener) const override { | 
 |     return this->MatchAndExplainImpl(false, container, listener); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements Each(element_matcher) for the given argument type Container. | 
 | // Symmetric to ContainsMatcherImpl. | 
 | template <typename Container> | 
 | class EachMatcherImpl : public QuantifierMatcherImpl<Container> { | 
 |  public: | 
 |   template <typename InnerMatcher> | 
 |   explicit EachMatcherImpl(InnerMatcher inner_matcher) | 
 |       : QuantifierMatcherImpl<Container>(inner_matcher) {} | 
 |  | 
 |   // Describes what this matcher does. | 
 |   void DescribeTo(::std::ostream* os) const override { | 
 |     *os << "only contains elements that "; | 
 |     this->inner_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const override { | 
 |     *os << "contains some element that "; | 
 |     this->inner_matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   bool MatchAndExplain(Container container, | 
 |                        MatchResultListener* listener) const override { | 
 |     return this->MatchAndExplainImpl(true, container, listener); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements polymorphic Contains(element_matcher). | 
 | template <typename M> | 
 | class ContainsMatcher { | 
 |  public: | 
 |   explicit ContainsMatcher(M m) : inner_matcher_(m) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     return Matcher<Container>( | 
 |         new ContainsMatcherImpl<const Container&>(inner_matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   const M inner_matcher_; | 
 | }; | 
 |  | 
 | // Implements polymorphic Each(element_matcher). | 
 | template <typename M> | 
 | class EachMatcher { | 
 |  public: | 
 |   explicit EachMatcher(M m) : inner_matcher_(m) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     return Matcher<Container>( | 
 |         new EachMatcherImpl<const Container&>(inner_matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   const M inner_matcher_; | 
 | }; | 
 |  | 
 | struct Rank1 {}; | 
 | struct Rank0 : Rank1 {}; | 
 |  | 
 | namespace pair_getters { | 
 | using std::get; | 
 | template <typename T> | 
 | auto First(T& x, Rank1) -> decltype(get<0>(x)) {  // NOLINT | 
 |   return get<0>(x); | 
 | } | 
 | template <typename T> | 
 | auto First(T& x, Rank0) -> decltype((x.first)) {  // NOLINT | 
 |   return x.first; | 
 | } | 
 |  | 
 | template <typename T> | 
 | auto Second(T& x, Rank1) -> decltype(get<1>(x)) {  // NOLINT | 
 |   return get<1>(x); | 
 | } | 
 | template <typename T> | 
 | auto Second(T& x, Rank0) -> decltype((x.second)) {  // NOLINT | 
 |   return x.second; | 
 | } | 
 | }  // namespace pair_getters | 
 |  | 
 | // Implements Key(inner_matcher) for the given argument pair type. | 
 | // Key(inner_matcher) matches an std::pair whose 'first' field matches | 
 | // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an | 
 | // std::map that contains at least one element whose key is >= 5. | 
 | template <typename PairType> | 
 | class KeyMatcherImpl : public MatcherInterface<PairType> { | 
 |  public: | 
 |   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; | 
 |   typedef typename RawPairType::first_type KeyType; | 
 |  | 
 |   template <typename InnerMatcher> | 
 |   explicit KeyMatcherImpl(InnerMatcher inner_matcher) | 
 |       : inner_matcher_( | 
 |           testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { | 
 |   } | 
 |  | 
 |   // Returns true if and only if 'key_value.first' (the key) matches the inner | 
 |   // matcher. | 
 |   bool MatchAndExplain(PairType key_value, | 
 |                        MatchResultListener* listener) const override { | 
 |     StringMatchResultListener inner_listener; | 
 |     const bool match = inner_matcher_.MatchAndExplain( | 
 |         pair_getters::First(key_value, Rank0()), &inner_listener); | 
 |     const std::string explanation = inner_listener.str(); | 
 |     if (explanation != "") { | 
 |       *listener << "whose first field is a value " << explanation; | 
 |     } | 
 |     return match; | 
 |   } | 
 |  | 
 |   // Describes what this matcher does. | 
 |   void DescribeTo(::std::ostream* os) const override { | 
 |     *os << "has a key that "; | 
 |     inner_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   // Describes what the negation of this matcher does. | 
 |   void DescribeNegationTo(::std::ostream* os) const override { | 
 |     *os << "doesn't have a key that "; | 
 |     inner_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |  private: | 
 |   const Matcher<const KeyType&> inner_matcher_; | 
 | }; | 
 |  | 
 | // Implements polymorphic Key(matcher_for_key). | 
 | template <typename M> | 
 | class KeyMatcher { | 
 |  public: | 
 |   explicit KeyMatcher(M m) : matcher_for_key_(m) {} | 
 |  | 
 |   template <typename PairType> | 
 |   operator Matcher<PairType>() const { | 
 |     return Matcher<PairType>( | 
 |         new KeyMatcherImpl<const PairType&>(matcher_for_key_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   const M matcher_for_key_; | 
 | }; | 
 |  | 
 | // Implements polymorphic Address(matcher_for_address). | 
 | template <typename InnerMatcher> | 
 | class AddressMatcher { | 
 |  public: | 
 |   explicit AddressMatcher(InnerMatcher m) : matcher_(m) {} | 
 |  | 
 |   template <typename Type> | 
 |   operator Matcher<Type>() const {  // NOLINT | 
 |     return Matcher<Type>(new Impl<const Type&>(matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // The monomorphic implementation that works for a particular object type. | 
 |   template <typename Type> | 
 |   class Impl : public MatcherInterface<Type> { | 
 |    public: | 
 |     using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *; | 
 |     explicit Impl(const InnerMatcher& matcher) | 
 |         : matcher_(MatcherCast<Address>(matcher)) {} | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "has address that "; | 
 |       matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       *os << "does not have address that "; | 
 |       matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     bool MatchAndExplain(Type object, | 
 |                          MatchResultListener* listener) const override { | 
 |       *listener << "which has address "; | 
 |       Address address = std::addressof(object); | 
 |       return MatchPrintAndExplain(address, matcher_, listener); | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<Address> matcher_; | 
 |   }; | 
 |   const InnerMatcher matcher_; | 
 | }; | 
 |  | 
 | // Implements Pair(first_matcher, second_matcher) for the given argument pair | 
 | // type with its two matchers. See Pair() function below. | 
 | template <typename PairType> | 
 | class PairMatcherImpl : public MatcherInterface<PairType> { | 
 |  public: | 
 |   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; | 
 |   typedef typename RawPairType::first_type FirstType; | 
 |   typedef typename RawPairType::second_type SecondType; | 
 |  | 
 |   template <typename FirstMatcher, typename SecondMatcher> | 
 |   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) | 
 |       : first_matcher_( | 
 |             testing::SafeMatcherCast<const FirstType&>(first_matcher)), | 
 |         second_matcher_( | 
 |             testing::SafeMatcherCast<const SecondType&>(second_matcher)) { | 
 |   } | 
 |  | 
 |   // Describes what this matcher does. | 
 |   void DescribeTo(::std::ostream* os) const override { | 
 |     *os << "has a first field that "; | 
 |     first_matcher_.DescribeTo(os); | 
 |     *os << ", and has a second field that "; | 
 |     second_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   // Describes what the negation of this matcher does. | 
 |   void DescribeNegationTo(::std::ostream* os) const override { | 
 |     *os << "has a first field that "; | 
 |     first_matcher_.DescribeNegationTo(os); | 
 |     *os << ", or has a second field that "; | 
 |     second_matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   // Returns true if and only if 'a_pair.first' matches first_matcher and | 
 |   // 'a_pair.second' matches second_matcher. | 
 |   bool MatchAndExplain(PairType a_pair, | 
 |                        MatchResultListener* listener) const override { | 
 |     if (!listener->IsInterested()) { | 
 |       // If the listener is not interested, we don't need to construct the | 
 |       // explanation. | 
 |       return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && | 
 |              second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); | 
 |     } | 
 |     StringMatchResultListener first_inner_listener; | 
 |     if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), | 
 |                                         &first_inner_listener)) { | 
 |       *listener << "whose first field does not match"; | 
 |       PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); | 
 |       return false; | 
 |     } | 
 |     StringMatchResultListener second_inner_listener; | 
 |     if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), | 
 |                                          &second_inner_listener)) { | 
 |       *listener << "whose second field does not match"; | 
 |       PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); | 
 |       return false; | 
 |     } | 
 |     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), | 
 |                    listener); | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   void ExplainSuccess(const std::string& first_explanation, | 
 |                       const std::string& second_explanation, | 
 |                       MatchResultListener* listener) const { | 
 |     *listener << "whose both fields match"; | 
 |     if (first_explanation != "") { | 
 |       *listener << ", where the first field is a value " << first_explanation; | 
 |     } | 
 |     if (second_explanation != "") { | 
 |       *listener << ", "; | 
 |       if (first_explanation != "") { | 
 |         *listener << "and "; | 
 |       } else { | 
 |         *listener << "where "; | 
 |       } | 
 |       *listener << "the second field is a value " << second_explanation; | 
 |     } | 
 |   } | 
 |  | 
 |   const Matcher<const FirstType&> first_matcher_; | 
 |   const Matcher<const SecondType&> second_matcher_; | 
 | }; | 
 |  | 
 | // Implements polymorphic Pair(first_matcher, second_matcher). | 
 | template <typename FirstMatcher, typename SecondMatcher> | 
 | class PairMatcher { | 
 |  public: | 
 |   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) | 
 |       : first_matcher_(first_matcher), second_matcher_(second_matcher) {} | 
 |  | 
 |   template <typename PairType> | 
 |   operator Matcher<PairType> () const { | 
 |     return Matcher<PairType>( | 
 |         new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   const FirstMatcher first_matcher_; | 
 |   const SecondMatcher second_matcher_; | 
 | }; | 
 |  | 
 | template <typename T, size_t... I> | 
 | auto UnpackStructImpl(const T& t, IndexSequence<I...>, int) | 
 |     -> decltype(std::tie(get<I>(t)...)) { | 
 |   static_assert(std::tuple_size<T>::value == sizeof...(I), | 
 |                 "Number of arguments doesn't match the number of fields."); | 
 |   return std::tie(get<I>(t)...); | 
 | } | 
 |  | 
 | #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) { | 
 |   const auto& [a] = t; | 
 |   return std::tie(a); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) { | 
 |   const auto& [a, b] = t; | 
 |   return std::tie(a, b); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) { | 
 |   const auto& [a, b, c] = t; | 
 |   return std::tie(a, b, c); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) { | 
 |   const auto& [a, b, c, d] = t; | 
 |   return std::tie(a, b, c, d); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) { | 
 |   const auto& [a, b, c, d, e] = t; | 
 |   return std::tie(a, b, c, d, e); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) { | 
 |   const auto& [a, b, c, d, e, f] = t; | 
 |   return std::tie(a, b, c, d, e, f); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) { | 
 |   const auto& [a, b, c, d, e, f, g] = t; | 
 |   return std::tie(a, b, c, d, e, f, g); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) { | 
 |   const auto& [a, b, c, d, e, f, g, h] = t; | 
 |   return std::tie(a, b, c, d, e, f, g, h); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) { | 
 |   const auto& [a, b, c, d, e, f, g, h, i] = t; | 
 |   return std::tie(a, b, c, d, e, f, g, h, i); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) { | 
 |   const auto& [a, b, c, d, e, f, g, h, i, j] = t; | 
 |   return std::tie(a, b, c, d, e, f, g, h, i, j); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) { | 
 |   const auto& [a, b, c, d, e, f, g, h, i, j, k] = t; | 
 |   return std::tie(a, b, c, d, e, f, g, h, i, j, k); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) { | 
 |   const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t; | 
 |   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) { | 
 |   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t; | 
 |   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) { | 
 |   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t; | 
 |   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) { | 
 |   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t; | 
 |   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o); | 
 | } | 
 | template <typename T> | 
 | auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) { | 
 |   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t; | 
 |   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); | 
 | } | 
 | #endif  // defined(__cpp_structured_bindings) | 
 |  | 
 | template <size_t I, typename T> | 
 | auto UnpackStruct(const T& t) | 
 |     -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) { | 
 |   return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0); | 
 | } | 
 |  | 
 | // Helper function to do comma folding in C++11. | 
 | // The array ensures left-to-right order of evaluation. | 
 | // Usage: VariadicExpand({expr...}); | 
 | template <typename T, size_t N> | 
 | void VariadicExpand(const T (&)[N]) {} | 
 |  | 
 | template <typename Struct, typename StructSize> | 
 | class FieldsAreMatcherImpl; | 
 |  | 
 | template <typename Struct, size_t... I> | 
 | class FieldsAreMatcherImpl<Struct, IndexSequence<I...>> | 
 |     : public MatcherInterface<Struct> { | 
 |   using UnpackedType = | 
 |       decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>())); | 
 |   using MatchersType = std::tuple< | 
 |       Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>; | 
 |  | 
 |  public: | 
 |   template <typename Inner> | 
 |   explicit FieldsAreMatcherImpl(const Inner& matchers) | 
 |       : matchers_(testing::SafeMatcherCast< | 
 |                   const typename std::tuple_element<I, UnpackedType>::type&>( | 
 |             std::get<I>(matchers))...) {} | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const override { | 
 |     const char* separator = ""; | 
 |     VariadicExpand( | 
 |         {(*os << separator << "has field #" << I << " that ", | 
 |           std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...}); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const override { | 
 |     const char* separator = ""; | 
 |     VariadicExpand({(*os << separator << "has field #" << I << " that ", | 
 |                      std::get<I>(matchers_).DescribeNegationTo(os), | 
 |                      separator = ", or ")...}); | 
 |   } | 
 |  | 
 |   bool MatchAndExplain(Struct t, MatchResultListener* listener) const override { | 
 |     return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener); | 
 |   } | 
 |  | 
 |  private: | 
 |   bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const { | 
 |     if (!listener->IsInterested()) { | 
 |       // If the listener is not interested, we don't need to construct the | 
 |       // explanation. | 
 |       bool good = true; | 
 |       VariadicExpand({good = good && std::get<I>(matchers_).Matches( | 
 |                                          std::get<I>(tuple))...}); | 
 |       return good; | 
 |     } | 
 |  | 
 |     size_t failed_pos = ~size_t{}; | 
 |  | 
 |     std::vector<StringMatchResultListener> inner_listener(sizeof...(I)); | 
 |  | 
 |     VariadicExpand( | 
 |         {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain( | 
 |                                         std::get<I>(tuple), &inner_listener[I]) | 
 |              ? failed_pos = I | 
 |              : 0 ...}); | 
 |     if (failed_pos != ~size_t{}) { | 
 |       *listener << "whose field #" << failed_pos << " does not match"; | 
 |       PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream()); | 
 |       return false; | 
 |     } | 
 |  | 
 |     *listener << "whose all elements match"; | 
 |     const char* separator = ", where"; | 
 |     for (size_t index = 0; index < sizeof...(I); ++index) { | 
 |       const std::string str = inner_listener[index].str(); | 
 |       if (!str.empty()) { | 
 |         *listener << separator << " field #" << index << " is a value " << str; | 
 |         separator = ", and"; | 
 |       } | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   MatchersType matchers_; | 
 | }; | 
 |  | 
 | template <typename... Inner> | 
 | class FieldsAreMatcher { | 
 |  public: | 
 |   explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {} | 
 |  | 
 |   template <typename Struct> | 
 |   operator Matcher<Struct>() const {  // NOLINT | 
 |     return Matcher<Struct>( | 
 |         new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>( | 
 |             matchers_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   std::tuple<Inner...> matchers_; | 
 | }; | 
 |  | 
 | // Implements ElementsAre() and ElementsAreArray(). | 
 | template <typename Container> | 
 | class ElementsAreMatcherImpl : public MatcherInterface<Container> { | 
 |  public: | 
 |   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
 |   typedef internal::StlContainerView<RawContainer> View; | 
 |   typedef typename View::type StlContainer; | 
 |   typedef typename View::const_reference StlContainerReference; | 
 |   typedef typename StlContainer::value_type Element; | 
 |  | 
 |   // Constructs the matcher from a sequence of element values or | 
 |   // element matchers. | 
 |   template <typename InputIter> | 
 |   ElementsAreMatcherImpl(InputIter first, InputIter last) { | 
 |     while (first != last) { | 
 |       matchers_.push_back(MatcherCast<const Element&>(*first++)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Describes what this matcher does. | 
 |   void DescribeTo(::std::ostream* os) const override { | 
 |     if (count() == 0) { | 
 |       *os << "is empty"; | 
 |     } else if (count() == 1) { | 
 |       *os << "has 1 element that "; | 
 |       matchers_[0].DescribeTo(os); | 
 |     } else { | 
 |       *os << "has " << Elements(count()) << " where\n"; | 
 |       for (size_t i = 0; i != count(); ++i) { | 
 |         *os << "element #" << i << " "; | 
 |         matchers_[i].DescribeTo(os); | 
 |         if (i + 1 < count()) { | 
 |           *os << ",\n"; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Describes what the negation of this matcher does. | 
 |   void DescribeNegationTo(::std::ostream* os) const override { | 
 |     if (count() == 0) { | 
 |       *os << "isn't empty"; | 
 |       return; | 
 |     } | 
 |  | 
 |     *os << "doesn't have " << Elements(count()) << ", or\n"; | 
 |     for (size_t i = 0; i != count(); ++i) { | 
 |       *os << "element #" << i << " "; | 
 |       matchers_[i].DescribeNegationTo(os); | 
 |       if (i + 1 < count()) { | 
 |         *os << ", or\n"; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   bool MatchAndExplain(Container container, | 
 |                        MatchResultListener* listener) const override { | 
 |     // To work with stream-like "containers", we must only walk | 
 |     // through the elements in one pass. | 
 |  | 
 |     const bool listener_interested = listener->IsInterested(); | 
 |  | 
 |     // explanations[i] is the explanation of the element at index i. | 
 |     ::std::vector<std::string> explanations(count()); | 
 |     StlContainerReference stl_container = View::ConstReference(container); | 
 |     typename StlContainer::const_iterator it = stl_container.begin(); | 
 |     size_t exam_pos = 0; | 
 |     bool mismatch_found = false;  // Have we found a mismatched element yet? | 
 |  | 
 |     // Go through the elements and matchers in pairs, until we reach | 
 |     // the end of either the elements or the matchers, or until we find a | 
 |     // mismatch. | 
 |     for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { | 
 |       bool match;  // Does the current element match the current matcher? | 
 |       if (listener_interested) { | 
 |         StringMatchResultListener s; | 
 |         match = matchers_[exam_pos].MatchAndExplain(*it, &s); | 
 |         explanations[exam_pos] = s.str(); | 
 |       } else { | 
 |         match = matchers_[exam_pos].Matches(*it); | 
 |       } | 
 |  | 
 |       if (!match) { | 
 |         mismatch_found = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |     // If mismatch_found is true, 'exam_pos' is the index of the mismatch. | 
 |  | 
 |     // Find how many elements the actual container has.  We avoid | 
 |     // calling size() s.t. this code works for stream-like "containers" | 
 |     // that don't define size(). | 
 |     size_t actual_count = exam_pos; | 
 |     for (; it != stl_container.end(); ++it) { | 
 |       ++actual_count; | 
 |     } | 
 |  | 
 |     if (actual_count != count()) { | 
 |       // The element count doesn't match.  If the container is empty, | 
 |       // there's no need to explain anything as Google Mock already | 
 |       // prints the empty container.  Otherwise we just need to show | 
 |       // how many elements there actually are. | 
 |       if (listener_interested && (actual_count != 0)) { | 
 |         *listener << "which has " << Elements(actual_count); | 
 |       } | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (mismatch_found) { | 
 |       // The element count matches, but the exam_pos-th element doesn't match. | 
 |       if (listener_interested) { | 
 |         *listener << "whose element #" << exam_pos << " doesn't match"; | 
 |         PrintIfNotEmpty(explanations[exam_pos], listener->stream()); | 
 |       } | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Every element matches its expectation.  We need to explain why | 
 |     // (the obvious ones can be skipped). | 
 |     if (listener_interested) { | 
 |       bool reason_printed = false; | 
 |       for (size_t i = 0; i != count(); ++i) { | 
 |         const std::string& s = explanations[i]; | 
 |         if (!s.empty()) { | 
 |           if (reason_printed) { | 
 |             *listener << ",\nand "; | 
 |           } | 
 |           *listener << "whose element #" << i << " matches, " << s; | 
 |           reason_printed = true; | 
 |         } | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   static Message Elements(size_t count) { | 
 |     return Message() << count << (count == 1 ? " element" : " elements"); | 
 |   } | 
 |  | 
 |   size_t count() const { return matchers_.size(); } | 
 |  | 
 |   ::std::vector<Matcher<const Element&> > matchers_; | 
 | }; | 
 |  | 
 | // Connectivity matrix of (elements X matchers), in element-major order. | 
 | // Initially, there are no edges. | 
 | // Use NextGraph() to iterate over all possible edge configurations. | 
 | // Use Randomize() to generate a random edge configuration. | 
 | class GTEST_API_ MatchMatrix { | 
 |  public: | 
 |   MatchMatrix(size_t num_elements, size_t num_matchers) | 
 |       : num_elements_(num_elements), | 
 |         num_matchers_(num_matchers), | 
 |         matched_(num_elements_* num_matchers_, 0) { | 
 |   } | 
 |  | 
 |   size_t LhsSize() const { return num_elements_; } | 
 |   size_t RhsSize() const { return num_matchers_; } | 
 |   bool HasEdge(size_t ilhs, size_t irhs) const { | 
 |     return matched_[SpaceIndex(ilhs, irhs)] == 1; | 
 |   } | 
 |   void SetEdge(size_t ilhs, size_t irhs, bool b) { | 
 |     matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; | 
 |   } | 
 |  | 
 |   // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, | 
 |   // adds 1 to that number; returns false if incrementing the graph left it | 
 |   // empty. | 
 |   bool NextGraph(); | 
 |  | 
 |   void Randomize(); | 
 |  | 
 |   std::string DebugString() const; | 
 |  | 
 |  private: | 
 |   size_t SpaceIndex(size_t ilhs, size_t irhs) const { | 
 |     return ilhs * num_matchers_ + irhs; | 
 |   } | 
 |  | 
 |   size_t num_elements_; | 
 |   size_t num_matchers_; | 
 |  | 
 |   // Each element is a char interpreted as bool. They are stored as a | 
 |   // flattened array in lhs-major order, use 'SpaceIndex()' to translate | 
 |   // a (ilhs, irhs) matrix coordinate into an offset. | 
 |   ::std::vector<char> matched_; | 
 | }; | 
 |  | 
 | typedef ::std::pair<size_t, size_t> ElementMatcherPair; | 
 | typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; | 
 |  | 
 | // Returns a maximum bipartite matching for the specified graph 'g'. | 
 | // The matching is represented as a vector of {element, matcher} pairs. | 
 | GTEST_API_ ElementMatcherPairs | 
 | FindMaxBipartiteMatching(const MatchMatrix& g); | 
 |  | 
 | struct UnorderedMatcherRequire { | 
 |   enum Flags { | 
 |     Superset = 1 << 0, | 
 |     Subset = 1 << 1, | 
 |     ExactMatch = Superset | Subset, | 
 |   }; | 
 | }; | 
 |  | 
 | // Untyped base class for implementing UnorderedElementsAre.  By | 
 | // putting logic that's not specific to the element type here, we | 
 | // reduce binary bloat and increase compilation speed. | 
 | class GTEST_API_ UnorderedElementsAreMatcherImplBase { | 
 |  protected: | 
 |   explicit UnorderedElementsAreMatcherImplBase( | 
 |       UnorderedMatcherRequire::Flags matcher_flags) | 
 |       : match_flags_(matcher_flags) {} | 
 |  | 
 |   // A vector of matcher describers, one for each element matcher. | 
 |   // Does not own the describers (and thus can be used only when the | 
 |   // element matchers are alive). | 
 |   typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; | 
 |  | 
 |   // Describes this UnorderedElementsAre matcher. | 
 |   void DescribeToImpl(::std::ostream* os) const; | 
 |  | 
 |   // Describes the negation of this UnorderedElementsAre matcher. | 
 |   void DescribeNegationToImpl(::std::ostream* os) const; | 
 |  | 
 |   bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, | 
 |                          const MatchMatrix& matrix, | 
 |                          MatchResultListener* listener) const; | 
 |  | 
 |   bool FindPairing(const MatchMatrix& matrix, | 
 |                    MatchResultListener* listener) const; | 
 |  | 
 |   MatcherDescriberVec& matcher_describers() { | 
 |     return matcher_describers_; | 
 |   } | 
 |  | 
 |   static Message Elements(size_t n) { | 
 |     return Message() << n << " element" << (n == 1 ? "" : "s"); | 
 |   } | 
 |  | 
 |   UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } | 
 |  | 
 |  private: | 
 |   UnorderedMatcherRequire::Flags match_flags_; | 
 |   MatcherDescriberVec matcher_describers_; | 
 | }; | 
 |  | 
 | // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and | 
 | // IsSupersetOf. | 
 | template <typename Container> | 
 | class UnorderedElementsAreMatcherImpl | 
 |     : public MatcherInterface<Container>, | 
 |       public UnorderedElementsAreMatcherImplBase { | 
 |  public: | 
 |   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
 |   typedef internal::StlContainerView<RawContainer> View; | 
 |   typedef typename View::type StlContainer; | 
 |   typedef typename View::const_reference StlContainerReference; | 
 |   typedef typename StlContainer::const_iterator StlContainerConstIterator; | 
 |   typedef typename StlContainer::value_type Element; | 
 |  | 
 |   template <typename InputIter> | 
 |   UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, | 
 |                                   InputIter first, InputIter last) | 
 |       : UnorderedElementsAreMatcherImplBase(matcher_flags) { | 
 |     for (; first != last; ++first) { | 
 |       matchers_.push_back(MatcherCast<const Element&>(*first)); | 
 |     } | 
 |     for (const auto& m : matchers_) { | 
 |       matcher_describers().push_back(m.GetDescriber()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Describes what this matcher does. | 
 |   void DescribeTo(::std::ostream* os) const override { | 
 |     return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); | 
 |   } | 
 |  | 
 |   // Describes what the negation of this matcher does. | 
 |   void DescribeNegationTo(::std::ostream* os) const override { | 
 |     return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); | 
 |   } | 
 |  | 
 |   bool MatchAndExplain(Container container, | 
 |                        MatchResultListener* listener) const override { | 
 |     StlContainerReference stl_container = View::ConstReference(container); | 
 |     ::std::vector<std::string> element_printouts; | 
 |     MatchMatrix matrix = | 
 |         AnalyzeElements(stl_container.begin(), stl_container.end(), | 
 |                         &element_printouts, listener); | 
 |  | 
 |     if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { | 
 |       return true; | 
 |     } | 
 |  | 
 |     if (match_flags() == UnorderedMatcherRequire::ExactMatch) { | 
 |       if (matrix.LhsSize() != matrix.RhsSize()) { | 
 |         // The element count doesn't match.  If the container is empty, | 
 |         // there's no need to explain anything as Google Mock already | 
 |         // prints the empty container. Otherwise we just need to show | 
 |         // how many elements there actually are. | 
 |         if (matrix.LhsSize() != 0 && listener->IsInterested()) { | 
 |           *listener << "which has " << Elements(matrix.LhsSize()); | 
 |         } | 
 |         return false; | 
 |       } | 
 |     } | 
 |  | 
 |     return VerifyMatchMatrix(element_printouts, matrix, listener) && | 
 |            FindPairing(matrix, listener); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename ElementIter> | 
 |   MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, | 
 |                               ::std::vector<std::string>* element_printouts, | 
 |                               MatchResultListener* listener) const { | 
 |     element_printouts->clear(); | 
 |     ::std::vector<char> did_match; | 
 |     size_t num_elements = 0; | 
 |     DummyMatchResultListener dummy; | 
 |     for (; elem_first != elem_last; ++num_elements, ++elem_first) { | 
 |       if (listener->IsInterested()) { | 
 |         element_printouts->push_back(PrintToString(*elem_first)); | 
 |       } | 
 |       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { | 
 |         did_match.push_back( | 
 |             matchers_[irhs].MatchAndExplain(*elem_first, &dummy)); | 
 |       } | 
 |     } | 
 |  | 
 |     MatchMatrix matrix(num_elements, matchers_.size()); | 
 |     ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); | 
 |     for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { | 
 |       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { | 
 |         matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); | 
 |       } | 
 |     } | 
 |     return matrix; | 
 |   } | 
 |  | 
 |   ::std::vector<Matcher<const Element&> > matchers_; | 
 | }; | 
 |  | 
 | // Functor for use in TransformTuple. | 
 | // Performs MatcherCast<Target> on an input argument of any type. | 
 | template <typename Target> | 
 | struct CastAndAppendTransform { | 
 |   template <typename Arg> | 
 |   Matcher<Target> operator()(const Arg& a) const { | 
 |     return MatcherCast<Target>(a); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements UnorderedElementsAre. | 
 | template <typename MatcherTuple> | 
 | class UnorderedElementsAreMatcher { | 
 |  public: | 
 |   explicit UnorderedElementsAreMatcher(const MatcherTuple& args) | 
 |       : matchers_(args) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
 |     typedef typename internal::StlContainerView<RawContainer>::type View; | 
 |     typedef typename View::value_type Element; | 
 |     typedef ::std::vector<Matcher<const Element&> > MatcherVec; | 
 |     MatcherVec matchers; | 
 |     matchers.reserve(::std::tuple_size<MatcherTuple>::value); | 
 |     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, | 
 |                          ::std::back_inserter(matchers)); | 
 |     return Matcher<Container>( | 
 |         new UnorderedElementsAreMatcherImpl<const Container&>( | 
 |             UnorderedMatcherRequire::ExactMatch, matchers.begin(), | 
 |             matchers.end())); | 
 |   } | 
 |  | 
 |  private: | 
 |   const MatcherTuple matchers_; | 
 | }; | 
 |  | 
 | // Implements ElementsAre. | 
 | template <typename MatcherTuple> | 
 | class ElementsAreMatcher { | 
 |  public: | 
 |   explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     GTEST_COMPILE_ASSERT_( | 
 |         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || | 
 |             ::std::tuple_size<MatcherTuple>::value < 2, | 
 |         use_UnorderedElementsAre_with_hash_tables); | 
 |  | 
 |     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
 |     typedef typename internal::StlContainerView<RawContainer>::type View; | 
 |     typedef typename View::value_type Element; | 
 |     typedef ::std::vector<Matcher<const Element&> > MatcherVec; | 
 |     MatcherVec matchers; | 
 |     matchers.reserve(::std::tuple_size<MatcherTuple>::value); | 
 |     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, | 
 |                          ::std::back_inserter(matchers)); | 
 |     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( | 
 |         matchers.begin(), matchers.end())); | 
 |   } | 
 |  | 
 |  private: | 
 |   const MatcherTuple matchers_; | 
 | }; | 
 |  | 
 | // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). | 
 | template <typename T> | 
 | class UnorderedElementsAreArrayMatcher { | 
 |  public: | 
 |   template <typename Iter> | 
 |   UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, | 
 |                                    Iter first, Iter last) | 
 |       : match_flags_(match_flags), matchers_(first, last) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     return Matcher<Container>( | 
 |         new UnorderedElementsAreMatcherImpl<const Container&>( | 
 |             match_flags_, matchers_.begin(), matchers_.end())); | 
 |   } | 
 |  | 
 |  private: | 
 |   UnorderedMatcherRequire::Flags match_flags_; | 
 |   ::std::vector<T> matchers_; | 
 | }; | 
 |  | 
 | // Implements ElementsAreArray(). | 
 | template <typename T> | 
 | class ElementsAreArrayMatcher { | 
 |  public: | 
 |   template <typename Iter> | 
 |   ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     GTEST_COMPILE_ASSERT_( | 
 |         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, | 
 |         use_UnorderedElementsAreArray_with_hash_tables); | 
 |  | 
 |     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( | 
 |         matchers_.begin(), matchers_.end())); | 
 |   } | 
 |  | 
 |  private: | 
 |   const ::std::vector<T> matchers_; | 
 | }; | 
 |  | 
 | // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second | 
 | // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, | 
 | // second) is a polymorphic matcher that matches a value x if and only if | 
 | // tm matches tuple (x, second).  Useful for implementing | 
 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). | 
 | // | 
 | // BoundSecondMatcher is copyable and assignable, as we need to put | 
 | // instances of this class in a vector when implementing | 
 | // UnorderedPointwise(). | 
 | template <typename Tuple2Matcher, typename Second> | 
 | class BoundSecondMatcher { | 
 |  public: | 
 |   BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) | 
 |       : tuple2_matcher_(tm), second_value_(second) {} | 
 |  | 
 |   BoundSecondMatcher(const BoundSecondMatcher& other) = default; | 
 |  | 
 |   template <typename T> | 
 |   operator Matcher<T>() const { | 
 |     return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); | 
 |   } | 
 |  | 
 |   // We have to define this for UnorderedPointwise() to compile in | 
 |   // C++98 mode, as it puts BoundSecondMatcher instances in a vector, | 
 |   // which requires the elements to be assignable in C++98.  The | 
 |   // compiler cannot generate the operator= for us, as Tuple2Matcher | 
 |   // and Second may not be assignable. | 
 |   // | 
 |   // However, this should never be called, so the implementation just | 
 |   // need to assert. | 
 |   void operator=(const BoundSecondMatcher& /*rhs*/) { | 
 |     GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename T> | 
 |   class Impl : public MatcherInterface<T> { | 
 |    public: | 
 |     typedef ::std::tuple<T, Second> ArgTuple; | 
 |  | 
 |     Impl(const Tuple2Matcher& tm, const Second& second) | 
 |         : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), | 
 |           second_value_(second) {} | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "and "; | 
 |       UniversalPrint(second_value_, os); | 
 |       *os << " "; | 
 |       mono_tuple2_matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     bool MatchAndExplain(T x, MatchResultListener* listener) const override { | 
 |       return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), | 
 |                                                   listener); | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<const ArgTuple&> mono_tuple2_matcher_; | 
 |     const Second second_value_; | 
 |   }; | 
 |  | 
 |   const Tuple2Matcher tuple2_matcher_; | 
 |   const Second second_value_; | 
 | }; | 
 |  | 
 | // Given a 2-tuple matcher tm and a value second, | 
 | // MatcherBindSecond(tm, second) returns a matcher that matches a | 
 | // value x if and only if tm matches tuple (x, second).  Useful for | 
 | // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray(). | 
 | template <typename Tuple2Matcher, typename Second> | 
 | BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( | 
 |     const Tuple2Matcher& tm, const Second& second) { | 
 |   return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); | 
 | } | 
 |  | 
 | // Returns the description for a matcher defined using the MATCHER*() | 
 | // macro where the user-supplied description string is "", if | 
 | // 'negation' is false; otherwise returns the description of the | 
 | // negation of the matcher.  'param_values' contains a list of strings | 
 | // that are the print-out of the matcher's parameters. | 
 | GTEST_API_ std::string FormatMatcherDescription(bool negation, | 
 |                                                 const char* matcher_name, | 
 |                                                 const Strings& param_values); | 
 |  | 
 | // Implements a matcher that checks the value of a optional<> type variable. | 
 | template <typename ValueMatcher> | 
 | class OptionalMatcher { | 
 |  public: | 
 |   explicit OptionalMatcher(const ValueMatcher& value_matcher) | 
 |       : value_matcher_(value_matcher) {} | 
 |  | 
 |   template <typename Optional> | 
 |   operator Matcher<Optional>() const { | 
 |     return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); | 
 |   } | 
 |  | 
 |   template <typename Optional> | 
 |   class Impl : public MatcherInterface<Optional> { | 
 |    public: | 
 |     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; | 
 |     typedef typename OptionalView::value_type ValueType; | 
 |     explicit Impl(const ValueMatcher& value_matcher) | 
 |         : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} | 
 |  | 
 |     void DescribeTo(::std::ostream* os) const override { | 
 |       *os << "value "; | 
 |       value_matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     void DescribeNegationTo(::std::ostream* os) const override { | 
 |       *os << "value "; | 
 |       value_matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     bool MatchAndExplain(Optional optional, | 
 |                          MatchResultListener* listener) const override { | 
 |       if (!optional) { | 
 |         *listener << "which is not engaged"; | 
 |         return false; | 
 |       } | 
 |       const ValueType& value = *optional; | 
 |       StringMatchResultListener value_listener; | 
 |       const bool match = value_matcher_.MatchAndExplain(value, &value_listener); | 
 |       *listener << "whose value " << PrintToString(value) | 
 |                 << (match ? " matches" : " doesn't match"); | 
 |       PrintIfNotEmpty(value_listener.str(), listener->stream()); | 
 |       return match; | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<ValueType> value_matcher_; | 
 |   }; | 
 |  | 
 |  private: | 
 |   const ValueMatcher value_matcher_; | 
 | }; | 
 |  | 
 | namespace variant_matcher { | 
 | // Overloads to allow VariantMatcher to do proper ADL lookup. | 
 | template <typename T> | 
 | void holds_alternative() {} | 
 | template <typename T> | 
 | void get() {} | 
 |  | 
 | // Implements a matcher that checks the value of a variant<> type variable. | 
 | template <typename T> | 
 | class VariantMatcher { | 
 |  public: | 
 |   explicit VariantMatcher(::testing::Matcher<const T&> matcher) | 
 |       : matcher_(std::move(matcher)) {} | 
 |  | 
 |   template <typename Variant> | 
 |   bool MatchAndExplain(const Variant& value, | 
 |                        ::testing::MatchResultListener* listener) const { | 
 |     using std::get; | 
 |     if (!listener->IsInterested()) { | 
 |       return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); | 
 |     } | 
 |  | 
 |     if (!holds_alternative<T>(value)) { | 
 |       *listener << "whose value is not of type '" << GetTypeName() << "'"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     const T& elem = get<T>(value); | 
 |     StringMatchResultListener elem_listener; | 
 |     const bool match = matcher_.MatchAndExplain(elem, &elem_listener); | 
 |     *listener << "whose value " << PrintToString(elem) | 
 |               << (match ? " matches" : " doesn't match"); | 
 |     PrintIfNotEmpty(elem_listener.str(), listener->stream()); | 
 |     return match; | 
 |   } | 
 |  | 
 |   void DescribeTo(std::ostream* os) const { | 
 |     *os << "is a variant<> with value of type '" << GetTypeName() | 
 |         << "' and the value "; | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(std::ostream* os) const { | 
 |     *os << "is a variant<> with value of type other than '" << GetTypeName() | 
 |         << "' or the value "; | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |  private: | 
 |   static std::string GetTypeName() { | 
 | #if GTEST_HAS_RTTI | 
 |     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( | 
 |         return internal::GetTypeName<T>()); | 
 | #endif | 
 |     return "the element type"; | 
 |   } | 
 |  | 
 |   const ::testing::Matcher<const T&> matcher_; | 
 | }; | 
 |  | 
 | }  // namespace variant_matcher | 
 |  | 
 | namespace any_cast_matcher { | 
 |  | 
 | // Overloads to allow AnyCastMatcher to do proper ADL lookup. | 
 | template <typename T> | 
 | void any_cast() {} | 
 |  | 
 | // Implements a matcher that any_casts the value. | 
 | template <typename T> | 
 | class AnyCastMatcher { | 
 |  public: | 
 |   explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) | 
 |       : matcher_(matcher) {} | 
 |  | 
 |   template <typename AnyType> | 
 |   bool MatchAndExplain(const AnyType& value, | 
 |                        ::testing::MatchResultListener* listener) const { | 
 |     if (!listener->IsInterested()) { | 
 |       const T* ptr = any_cast<T>(&value); | 
 |       return ptr != nullptr && matcher_.Matches(*ptr); | 
 |     } | 
 |  | 
 |     const T* elem = any_cast<T>(&value); | 
 |     if (elem == nullptr) { | 
 |       *listener << "whose value is not of type '" << GetTypeName() << "'"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     StringMatchResultListener elem_listener; | 
 |     const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); | 
 |     *listener << "whose value " << PrintToString(*elem) | 
 |               << (match ? " matches" : " doesn't match"); | 
 |     PrintIfNotEmpty(elem_listener.str(), listener->stream()); | 
 |     return match; | 
 |   } | 
 |  | 
 |   void DescribeTo(std::ostream* os) const { | 
 |     *os << "is an 'any' type with value of type '" << GetTypeName() | 
 |         << "' and the value "; | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(std::ostream* os) const { | 
 |     *os << "is an 'any' type with value of type other than '" << GetTypeName() | 
 |         << "' or the value "; | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |  private: | 
 |   static std::string GetTypeName() { | 
 | #if GTEST_HAS_RTTI | 
 |     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( | 
 |         return internal::GetTypeName<T>()); | 
 | #endif | 
 |     return "the element type"; | 
 |   } | 
 |  | 
 |   const ::testing::Matcher<const T&> matcher_; | 
 | }; | 
 |  | 
 | }  // namespace any_cast_matcher | 
 |  | 
 | // Implements the Args() matcher. | 
 | template <class ArgsTuple, size_t... k> | 
 | class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { | 
 |  public: | 
 |   using RawArgsTuple = typename std::decay<ArgsTuple>::type; | 
 |   using SelectedArgs = | 
 |       std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; | 
 |   using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; | 
 |  | 
 |   template <typename InnerMatcher> | 
 |   explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) | 
 |       : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} | 
 |  | 
 |   bool MatchAndExplain(ArgsTuple args, | 
 |                        MatchResultListener* listener) const override { | 
 |     // Workaround spurious C4100 on MSVC<=15.7 when k is empty. | 
 |     (void)args; | 
 |     const SelectedArgs& selected_args = | 
 |         std::forward_as_tuple(std::get<k>(args)...); | 
 |     if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); | 
 |  | 
 |     PrintIndices(listener->stream()); | 
 |     *listener << "are " << PrintToString(selected_args); | 
 |  | 
 |     StringMatchResultListener inner_listener; | 
 |     const bool match = | 
 |         inner_matcher_.MatchAndExplain(selected_args, &inner_listener); | 
 |     PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
 |     return match; | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const override { | 
 |     *os << "are a tuple "; | 
 |     PrintIndices(os); | 
 |     inner_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const override { | 
 |     *os << "are a tuple "; | 
 |     PrintIndices(os); | 
 |     inner_matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Prints the indices of the selected fields. | 
 |   static void PrintIndices(::std::ostream* os) { | 
 |     *os << "whose fields ("; | 
 |     const char* sep = ""; | 
 |     // Workaround spurious C4189 on MSVC<=15.7 when k is empty. | 
 |     (void)sep; | 
 |     const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...}; | 
 |     (void)dummy; | 
 |     *os << ") "; | 
 |   } | 
 |  | 
 |   MonomorphicInnerMatcher inner_matcher_; | 
 | }; | 
 |  | 
 | template <class InnerMatcher, size_t... k> | 
 | class ArgsMatcher { | 
 |  public: | 
 |   explicit ArgsMatcher(InnerMatcher inner_matcher) | 
 |       : inner_matcher_(std::move(inner_matcher)) {} | 
 |  | 
 |   template <typename ArgsTuple> | 
 |   operator Matcher<ArgsTuple>() const {  // NOLINT | 
 |     return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   InnerMatcher inner_matcher_; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // ElementsAreArray(iterator_first, iterator_last) | 
 | // ElementsAreArray(pointer, count) | 
 | // ElementsAreArray(array) | 
 | // ElementsAreArray(container) | 
 | // ElementsAreArray({ e1, e2, ..., en }) | 
 | // | 
 | // The ElementsAreArray() functions are like ElementsAre(...), except | 
 | // that they are given a homogeneous sequence rather than taking each | 
 | // element as a function argument. The sequence can be specified as an | 
 | // array, a pointer and count, a vector, an initializer list, or an | 
 | // STL iterator range. In each of these cases, the underlying sequence | 
 | // can be either a sequence of values or a sequence of matchers. | 
 | // | 
 | // All forms of ElementsAreArray() make a copy of the input matcher sequence. | 
 |  | 
 | template <typename Iter> | 
 | inline internal::ElementsAreArrayMatcher< | 
 |     typename ::std::iterator_traits<Iter>::value_type> | 
 | ElementsAreArray(Iter first, Iter last) { | 
 |   typedef typename ::std::iterator_traits<Iter>::value_type T; | 
 |   return internal::ElementsAreArrayMatcher<T>(first, last); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( | 
 |     const T* pointer, size_t count) { | 
 |   return ElementsAreArray(pointer, pointer + count); | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( | 
 |     const T (&array)[N]) { | 
 |   return ElementsAreArray(array, N); | 
 | } | 
 |  | 
 | template <typename Container> | 
 | inline internal::ElementsAreArrayMatcher<typename Container::value_type> | 
 | ElementsAreArray(const Container& container) { | 
 |   return ElementsAreArray(container.begin(), container.end()); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::ElementsAreArrayMatcher<T> | 
 | ElementsAreArray(::std::initializer_list<T> xs) { | 
 |   return ElementsAreArray(xs.begin(), xs.end()); | 
 | } | 
 |  | 
 | // UnorderedElementsAreArray(iterator_first, iterator_last) | 
 | // UnorderedElementsAreArray(pointer, count) | 
 | // UnorderedElementsAreArray(array) | 
 | // UnorderedElementsAreArray(container) | 
 | // UnorderedElementsAreArray({ e1, e2, ..., en }) | 
 | // | 
 | // UnorderedElementsAreArray() verifies that a bijective mapping onto a | 
 | // collection of matchers exists. | 
 | // | 
 | // The matchers can be specified as an array, a pointer and count, a container, | 
 | // an initializer list, or an STL iterator range. In each of these cases, the | 
 | // underlying matchers can be either values or matchers. | 
 |  | 
 | template <typename Iter> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename ::std::iterator_traits<Iter>::value_type> | 
 | UnorderedElementsAreArray(Iter first, Iter last) { | 
 |   typedef typename ::std::iterator_traits<Iter>::value_type T; | 
 |   return internal::UnorderedElementsAreArrayMatcher<T>( | 
 |       internal::UnorderedMatcherRequire::ExactMatch, first, last); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> | 
 | UnorderedElementsAreArray(const T* pointer, size_t count) { | 
 |   return UnorderedElementsAreArray(pointer, pointer + count); | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> | 
 | UnorderedElementsAreArray(const T (&array)[N]) { | 
 |   return UnorderedElementsAreArray(array, N); | 
 | } | 
 |  | 
 | template <typename Container> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename Container::value_type> | 
 | UnorderedElementsAreArray(const Container& container) { | 
 |   return UnorderedElementsAreArray(container.begin(), container.end()); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> | 
 | UnorderedElementsAreArray(::std::initializer_list<T> xs) { | 
 |   return UnorderedElementsAreArray(xs.begin(), xs.end()); | 
 | } | 
 |  | 
 | // _ is a matcher that matches anything of any type. | 
 | // | 
 | // This definition is fine as: | 
 | // | 
 | //   1. The C++ standard permits using the name _ in a namespace that | 
 | //      is not the global namespace or ::std. | 
 | //   2. The AnythingMatcher class has no data member or constructor, | 
 | //      so it's OK to create global variables of this type. | 
 | //   3. c-style has approved of using _ in this case. | 
 | const internal::AnythingMatcher _ = {}; | 
 | // Creates a matcher that matches any value of the given type T. | 
 | template <typename T> | 
 | inline Matcher<T> A() { | 
 |   return _; | 
 | } | 
 |  | 
 | // Creates a matcher that matches any value of the given type T. | 
 | template <typename T> | 
 | inline Matcher<T> An() { | 
 |   return _; | 
 | } | 
 |  | 
 | template <typename T, typename M> | 
 | Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( | 
 |     const M& value, std::false_type /* convertible_to_matcher */, | 
 |     std::false_type /* convertible_to_T */) { | 
 |   return Eq(value); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches any NULL pointer. | 
 | inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { | 
 |   return MakePolymorphicMatcher(internal::IsNullMatcher()); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches any non-NULL pointer. | 
 | // This is convenient as Not(NULL) doesn't compile (the compiler | 
 | // thinks that that expression is comparing a pointer with an integer). | 
 | inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { | 
 |   return MakePolymorphicMatcher(internal::NotNullMatcher()); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches any argument that | 
 | // references variable x. | 
 | template <typename T> | 
 | inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT | 
 |   return internal::RefMatcher<T&>(x); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches any NaN floating point. | 
 | inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() { | 
 |   return MakePolymorphicMatcher(internal::IsNanMatcher()); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any double argument approximately | 
 | // equal to rhs, where two NANs are considered unequal. | 
 | inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { | 
 |   return internal::FloatingEqMatcher<double>(rhs, false); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any double argument approximately | 
 | // equal to rhs, including NaN values when rhs is NaN. | 
 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { | 
 |   return internal::FloatingEqMatcher<double>(rhs, true); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any double argument approximately equal to | 
 | // rhs, up to the specified max absolute error bound, where two NANs are | 
 | // considered unequal.  The max absolute error bound must be non-negative. | 
 | inline internal::FloatingEqMatcher<double> DoubleNear( | 
 |     double rhs, double max_abs_error) { | 
 |   return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any double argument approximately equal to | 
 | // rhs, up to the specified max absolute error bound, including NaN values when | 
 | // rhs is NaN.  The max absolute error bound must be non-negative. | 
 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( | 
 |     double rhs, double max_abs_error) { | 
 |   return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any float argument approximately | 
 | // equal to rhs, where two NANs are considered unequal. | 
 | inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { | 
 |   return internal::FloatingEqMatcher<float>(rhs, false); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any float argument approximately | 
 | // equal to rhs, including NaN values when rhs is NaN. | 
 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { | 
 |   return internal::FloatingEqMatcher<float>(rhs, true); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any float argument approximately equal to | 
 | // rhs, up to the specified max absolute error bound, where two NANs are | 
 | // considered unequal.  The max absolute error bound must be non-negative. | 
 | inline internal::FloatingEqMatcher<float> FloatNear( | 
 |     float rhs, float max_abs_error) { | 
 |   return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any float argument approximately equal to | 
 | // rhs, up to the specified max absolute error bound, including NaN values when | 
 | // rhs is NaN.  The max absolute error bound must be non-negative. | 
 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( | 
 |     float rhs, float max_abs_error) { | 
 |   return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); | 
 | } | 
 |  | 
 | // Creates a matcher that matches a pointer (raw or smart) that points | 
 | // to a value that matches inner_matcher. | 
 | template <typename InnerMatcher> | 
 | inline internal::PointeeMatcher<InnerMatcher> Pointee( | 
 |     const InnerMatcher& inner_matcher) { | 
 |   return internal::PointeeMatcher<InnerMatcher>(inner_matcher); | 
 | } | 
 |  | 
 | #if GTEST_HAS_RTTI | 
 | // Creates a matcher that matches a pointer or reference that matches | 
 | // inner_matcher when dynamic_cast<To> is applied. | 
 | // The result of dynamic_cast<To> is forwarded to the inner matcher. | 
 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. | 
 | // If To is a reference and the cast fails, this matcher returns false | 
 | // immediately. | 
 | template <typename To> | 
 | inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > | 
 | WhenDynamicCastTo(const Matcher<To>& inner_matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::WhenDynamicCastToMatcher<To>(inner_matcher)); | 
 | } | 
 | #endif  // GTEST_HAS_RTTI | 
 |  | 
 | // Creates a matcher that matches an object whose given field matches | 
 | // 'matcher'.  For example, | 
 | //   Field(&Foo::number, Ge(5)) | 
 | // matches a Foo object x if and only if x.number >= 5. | 
 | template <typename Class, typename FieldType, typename FieldMatcher> | 
 | inline PolymorphicMatcher< | 
 |   internal::FieldMatcher<Class, FieldType> > Field( | 
 |     FieldType Class::*field, const FieldMatcher& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::FieldMatcher<Class, FieldType>( | 
 |           field, MatcherCast<const FieldType&>(matcher))); | 
 |   // The call to MatcherCast() is required for supporting inner | 
 |   // matchers of compatible types.  For example, it allows | 
 |   //   Field(&Foo::bar, m) | 
 |   // to compile where bar is an int32 and m is a matcher for int64. | 
 | } | 
 |  | 
 | // Same as Field() but also takes the name of the field to provide better error | 
 | // messages. | 
 | template <typename Class, typename FieldType, typename FieldMatcher> | 
 | inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( | 
 |     const std::string& field_name, FieldType Class::*field, | 
 |     const FieldMatcher& matcher) { | 
 |   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( | 
 |       field_name, field, MatcherCast<const FieldType&>(matcher))); | 
 | } | 
 |  | 
 | // Creates a matcher that matches an object whose given property | 
 | // matches 'matcher'.  For example, | 
 | //   Property(&Foo::str, StartsWith("hi")) | 
 | // matches a Foo object x if and only if x.str() starts with "hi". | 
 | template <typename Class, typename PropertyType, typename PropertyMatcher> | 
 | inline PolymorphicMatcher<internal::PropertyMatcher< | 
 |     Class, PropertyType, PropertyType (Class::*)() const> > | 
 | Property(PropertyType (Class::*property)() const, | 
 |          const PropertyMatcher& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::PropertyMatcher<Class, PropertyType, | 
 |                                 PropertyType (Class::*)() const>( | 
 |           property, MatcherCast<const PropertyType&>(matcher))); | 
 |   // The call to MatcherCast() is required for supporting inner | 
 |   // matchers of compatible types.  For example, it allows | 
 |   //   Property(&Foo::bar, m) | 
 |   // to compile where bar() returns an int32 and m is a matcher for int64. | 
 | } | 
 |  | 
 | // Same as Property() above, but also takes the name of the property to provide | 
 | // better error messages. | 
 | template <typename Class, typename PropertyType, typename PropertyMatcher> | 
 | inline PolymorphicMatcher<internal::PropertyMatcher< | 
 |     Class, PropertyType, PropertyType (Class::*)() const> > | 
 | Property(const std::string& property_name, | 
 |          PropertyType (Class::*property)() const, | 
 |          const PropertyMatcher& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::PropertyMatcher<Class, PropertyType, | 
 |                                 PropertyType (Class::*)() const>( | 
 |           property_name, property, MatcherCast<const PropertyType&>(matcher))); | 
 | } | 
 |  | 
 | // The same as above but for reference-qualified member functions. | 
 | template <typename Class, typename PropertyType, typename PropertyMatcher> | 
 | inline PolymorphicMatcher<internal::PropertyMatcher< | 
 |     Class, PropertyType, PropertyType (Class::*)() const &> > | 
 | Property(PropertyType (Class::*property)() const &, | 
 |          const PropertyMatcher& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::PropertyMatcher<Class, PropertyType, | 
 |                                 PropertyType (Class::*)() const&>( | 
 |           property, MatcherCast<const PropertyType&>(matcher))); | 
 | } | 
 |  | 
 | // Three-argument form for reference-qualified member functions. | 
 | template <typename Class, typename PropertyType, typename PropertyMatcher> | 
 | inline PolymorphicMatcher<internal::PropertyMatcher< | 
 |     Class, PropertyType, PropertyType (Class::*)() const &> > | 
 | Property(const std::string& property_name, | 
 |          PropertyType (Class::*property)() const &, | 
 |          const PropertyMatcher& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::PropertyMatcher<Class, PropertyType, | 
 |                                 PropertyType (Class::*)() const&>( | 
 |           property_name, property, MatcherCast<const PropertyType&>(matcher))); | 
 | } | 
 |  | 
 | // Creates a matcher that matches an object if and only if the result of | 
 | // applying a callable to x matches 'matcher'. For example, | 
 | //   ResultOf(f, StartsWith("hi")) | 
 | // matches a Foo object x if and only if f(x) starts with "hi". | 
 | // `callable` parameter can be a function, function pointer, or a functor. It is | 
 | // required to keep no state affecting the results of the calls on it and make | 
 | // no assumptions about how many calls will be made. Any state it keeps must be | 
 | // protected from the concurrent access. | 
 | template <typename Callable, typename InnerMatcher> | 
 | internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( | 
 |     Callable callable, InnerMatcher matcher) { | 
 |   return internal::ResultOfMatcher<Callable, InnerMatcher>( | 
 |       std::move(callable), std::move(matcher)); | 
 | } | 
 |  | 
 | // String matchers. | 
 |  | 
 | // Matches a string equal to str. | 
 | template <typename T = std::string> | 
 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( | 
 |     const internal::StringLike<T>& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::string>(std::string(str), true, true)); | 
 | } | 
 |  | 
 | // Matches a string not equal to str. | 
 | template <typename T = std::string> | 
 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( | 
 |     const internal::StringLike<T>& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::string>(std::string(str), false, true)); | 
 | } | 
 |  | 
 | // Matches a string equal to str, ignoring case. | 
 | template <typename T = std::string> | 
 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( | 
 |     const internal::StringLike<T>& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::string>(std::string(str), true, false)); | 
 | } | 
 |  | 
 | // Matches a string not equal to str, ignoring case. | 
 | template <typename T = std::string> | 
 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( | 
 |     const internal::StringLike<T>& str) { | 
 |   return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>( | 
 |       std::string(str), false, false)); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any string, std::string, or C string | 
 | // that contains the given substring. | 
 | template <typename T = std::string> | 
 | PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( | 
 |     const internal::StringLike<T>& substring) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::HasSubstrMatcher<std::string>(std::string(substring))); | 
 | } | 
 |  | 
 | // Matches a string that starts with 'prefix' (case-sensitive). | 
 | template <typename T = std::string> | 
 | PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( | 
 |     const internal::StringLike<T>& prefix) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StartsWithMatcher<std::string>(std::string(prefix))); | 
 | } | 
 |  | 
 | // Matches a string that ends with 'suffix' (case-sensitive). | 
 | template <typename T = std::string> | 
 | PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( | 
 |     const internal::StringLike<T>& suffix) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::EndsWithMatcher<std::string>(std::string(suffix))); | 
 | } | 
 |  | 
 | #if GTEST_HAS_STD_WSTRING | 
 | // Wide string matchers. | 
 |  | 
 | // Matches a string equal to str. | 
 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( | 
 |     const std::wstring& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::wstring>(str, true, true)); | 
 | } | 
 |  | 
 | // Matches a string not equal to str. | 
 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( | 
 |     const std::wstring& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::wstring>(str, false, true)); | 
 | } | 
 |  | 
 | // Matches a string equal to str, ignoring case. | 
 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > | 
 | StrCaseEq(const std::wstring& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::wstring>(str, true, false)); | 
 | } | 
 |  | 
 | // Matches a string not equal to str, ignoring case. | 
 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > | 
 | StrCaseNe(const std::wstring& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::wstring>(str, false, false)); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any ::wstring, std::wstring, or C wide string | 
 | // that contains the given substring. | 
 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( | 
 |     const std::wstring& substring) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::HasSubstrMatcher<std::wstring>(substring)); | 
 | } | 
 |  | 
 | // Matches a string that starts with 'prefix' (case-sensitive). | 
 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > | 
 | StartsWith(const std::wstring& prefix) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StartsWithMatcher<std::wstring>(prefix)); | 
 | } | 
 |  | 
 | // Matches a string that ends with 'suffix' (case-sensitive). | 
 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( | 
 |     const std::wstring& suffix) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::EndsWithMatcher<std::wstring>(suffix)); | 
 | } | 
 |  | 
 | #endif  // GTEST_HAS_STD_WSTRING | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where the | 
 | // first field == the second field. | 
 | inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where the | 
 | // first field >= the second field. | 
 | inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where the | 
 | // first field > the second field. | 
 | inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where the | 
 | // first field <= the second field. | 
 | inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where the | 
 | // first field < the second field. | 
 | inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where the | 
 | // first field != the second field. | 
 | inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // FloatEq(first field) matches the second field. | 
 | inline internal::FloatingEq2Matcher<float> FloatEq() { | 
 |   return internal::FloatingEq2Matcher<float>(); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // DoubleEq(first field) matches the second field. | 
 | inline internal::FloatingEq2Matcher<double> DoubleEq() { | 
 |   return internal::FloatingEq2Matcher<double>(); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // FloatEq(first field) matches the second field with NaN equality. | 
 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { | 
 |   return internal::FloatingEq2Matcher<float>(true); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // DoubleEq(first field) matches the second field with NaN equality. | 
 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { | 
 |   return internal::FloatingEq2Matcher<double>(true); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // FloatNear(first field, max_abs_error) matches the second field. | 
 | inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { | 
 |   return internal::FloatingEq2Matcher<float>(max_abs_error); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // DoubleNear(first field, max_abs_error) matches the second field. | 
 | inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { | 
 |   return internal::FloatingEq2Matcher<double>(max_abs_error); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // FloatNear(first field, max_abs_error) matches the second field with NaN | 
 | // equality. | 
 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( | 
 |     float max_abs_error) { | 
 |   return internal::FloatingEq2Matcher<float>(max_abs_error, true); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // DoubleNear(first field, max_abs_error) matches the second field with NaN | 
 | // equality. | 
 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( | 
 |     double max_abs_error) { | 
 |   return internal::FloatingEq2Matcher<double>(max_abs_error, true); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any value of type T that m doesn't | 
 | // match. | 
 | template <typename InnerMatcher> | 
 | inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { | 
 |   return internal::NotMatcher<InnerMatcher>(m); | 
 | } | 
 |  | 
 | // Returns a matcher that matches anything that satisfies the given | 
 | // predicate.  The predicate can be any unary function or functor | 
 | // whose return type can be implicitly converted to bool. | 
 | template <typename Predicate> | 
 | inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > | 
 | Truly(Predicate pred) { | 
 |   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); | 
 | } | 
 |  | 
 | // Returns a matcher that matches the container size. The container must | 
 | // support both size() and size_type which all STL-like containers provide. | 
 | // Note that the parameter 'size' can be a value of type size_type as well as | 
 | // matcher. For instance: | 
 | //   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements. | 
 | //   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2. | 
 | template <typename SizeMatcher> | 
 | inline internal::SizeIsMatcher<SizeMatcher> | 
 | SizeIs(const SizeMatcher& size_matcher) { | 
 |   return internal::SizeIsMatcher<SizeMatcher>(size_matcher); | 
 | } | 
 |  | 
 | // Returns a matcher that matches the distance between the container's begin() | 
 | // iterator and its end() iterator, i.e. the size of the container. This matcher | 
 | // can be used instead of SizeIs with containers such as std::forward_list which | 
 | // do not implement size(). The container must provide const_iterator (with | 
 | // valid iterator_traits), begin() and end(). | 
 | template <typename DistanceMatcher> | 
 | inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> | 
 | BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { | 
 |   return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); | 
 | } | 
 |  | 
 | // Returns a matcher that matches an equal container. | 
 | // This matcher behaves like Eq(), but in the event of mismatch lists the | 
 | // values that are included in one container but not the other. (Duplicate | 
 | // values and order differences are not explained.) | 
 | template <typename Container> | 
 | inline PolymorphicMatcher<internal::ContainerEqMatcher< | 
 |     typename std::remove_const<Container>::type>> | 
 | ContainerEq(const Container& rhs) { | 
 |   return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs)); | 
 | } | 
 |  | 
 | // Returns a matcher that matches a container that, when sorted using | 
 | // the given comparator, matches container_matcher. | 
 | template <typename Comparator, typename ContainerMatcher> | 
 | inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> | 
 | WhenSortedBy(const Comparator& comparator, | 
 |              const ContainerMatcher& container_matcher) { | 
 |   return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( | 
 |       comparator, container_matcher); | 
 | } | 
 |  | 
 | // Returns a matcher that matches a container that, when sorted using | 
 | // the < operator, matches container_matcher. | 
 | template <typename ContainerMatcher> | 
 | inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> | 
 | WhenSorted(const ContainerMatcher& container_matcher) { | 
 |   return | 
 |       internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( | 
 |           internal::LessComparator(), container_matcher); | 
 | } | 
 |  | 
 | // Matches an STL-style container or a native array that contains the | 
 | // same number of elements as in rhs, where its i-th element and rhs's | 
 | // i-th element (as a pair) satisfy the given pair matcher, for all i. | 
 | // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const | 
 | // T1&, const T2&> >, where T1 and T2 are the types of elements in the | 
 | // LHS container and the RHS container respectively. | 
 | template <typename TupleMatcher, typename Container> | 
 | inline internal::PointwiseMatcher<TupleMatcher, | 
 |                                   typename std::remove_const<Container>::type> | 
 | Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { | 
 |   return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher, | 
 |                                                              rhs); | 
 | } | 
 |  | 
 |  | 
 | // Supports the Pointwise(m, {a, b, c}) syntax. | 
 | template <typename TupleMatcher, typename T> | 
 | inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( | 
 |     const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { | 
 |   return Pointwise(tuple_matcher, std::vector<T>(rhs)); | 
 | } | 
 |  | 
 |  | 
 | // UnorderedPointwise(pair_matcher, rhs) matches an STL-style | 
 | // container or a native array that contains the same number of | 
 | // elements as in rhs, where in some permutation of the container, its | 
 | // i-th element and rhs's i-th element (as a pair) satisfy the given | 
 | // pair matcher, for all i.  Tuple2Matcher must be able to be safely | 
 | // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are | 
 | // the types of elements in the LHS container and the RHS container | 
 | // respectively. | 
 | // | 
 | // This is like Pointwise(pair_matcher, rhs), except that the element | 
 | // order doesn't matter. | 
 | template <typename Tuple2Matcher, typename RhsContainer> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename internal::BoundSecondMatcher< | 
 |         Tuple2Matcher, | 
 |         typename internal::StlContainerView< | 
 |             typename std::remove_const<RhsContainer>::type>::type::value_type>> | 
 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, | 
 |                    const RhsContainer& rhs_container) { | 
 |   // RhsView allows the same code to handle RhsContainer being a | 
 |   // STL-style container and it being a native C-style array. | 
 |   typedef typename internal::StlContainerView<RhsContainer> RhsView; | 
 |   typedef typename RhsView::type RhsStlContainer; | 
 |   typedef typename RhsStlContainer::value_type Second; | 
 |   const RhsStlContainer& rhs_stl_container = | 
 |       RhsView::ConstReference(rhs_container); | 
 |  | 
 |   // Create a matcher for each element in rhs_container. | 
 |   ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; | 
 |   for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); | 
 |        it != rhs_stl_container.end(); ++it) { | 
 |     matchers.push_back( | 
 |         internal::MatcherBindSecond(tuple2_matcher, *it)); | 
 |   } | 
 |  | 
 |   // Delegate the work to UnorderedElementsAreArray(). | 
 |   return UnorderedElementsAreArray(matchers); | 
 | } | 
 |  | 
 |  | 
 | // Supports the UnorderedPointwise(m, {a, b, c}) syntax. | 
 | template <typename Tuple2Matcher, typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename internal::BoundSecondMatcher<Tuple2Matcher, T> > | 
 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, | 
 |                    std::initializer_list<T> rhs) { | 
 |   return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); | 
 | } | 
 |  | 
 |  | 
 | // Matches an STL-style container or a native array that contains at | 
 | // least one element matching the given value or matcher. | 
 | // | 
 | // Examples: | 
 | //   ::std::set<int> page_ids; | 
 | //   page_ids.insert(3); | 
 | //   page_ids.insert(1); | 
 | //   EXPECT_THAT(page_ids, Contains(1)); | 
 | //   EXPECT_THAT(page_ids, Contains(Gt(2))); | 
 | //   EXPECT_THAT(page_ids, Not(Contains(4))); | 
 | // | 
 | //   ::std::map<int, size_t> page_lengths; | 
 | //   page_lengths[1] = 100; | 
 | //   EXPECT_THAT(page_lengths, | 
 | //               Contains(::std::pair<const int, size_t>(1, 100))); | 
 | // | 
 | //   const char* user_ids[] = { "joe", "mike", "tom" }; | 
 | //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); | 
 | template <typename M> | 
 | inline internal::ContainsMatcher<M> Contains(M matcher) { | 
 |   return internal::ContainsMatcher<M>(matcher); | 
 | } | 
 |  | 
 | // IsSupersetOf(iterator_first, iterator_last) | 
 | // IsSupersetOf(pointer, count) | 
 | // IsSupersetOf(array) | 
 | // IsSupersetOf(container) | 
 | // IsSupersetOf({e1, e2, ..., en}) | 
 | // | 
 | // IsSupersetOf() verifies that a surjective partial mapping onto a collection | 
 | // of matchers exists. In other words, a container matches | 
 | // IsSupersetOf({e1, ..., en}) if and only if there is a permutation | 
 | // {y1, ..., yn} of some of the container's elements where y1 matches e1, | 
 | // ..., and yn matches en. Obviously, the size of the container must be >= n | 
 | // in order to have a match. Examples: | 
 | // | 
 | // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and | 
 | //   1 matches Ne(0). | 
 | // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches | 
 | //   both Eq(1) and Lt(2). The reason is that different matchers must be used | 
 | //   for elements in different slots of the container. | 
 | // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches | 
 | //   Eq(1) and (the second) 1 matches Lt(2). | 
 | // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) | 
 | //   Gt(1) and 3 matches (the second) Gt(1). | 
 | // | 
 | // The matchers can be specified as an array, a pointer and count, a container, | 
 | // an initializer list, or an STL iterator range. In each of these cases, the | 
 | // underlying matchers can be either values or matchers. | 
 |  | 
 | template <typename Iter> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename ::std::iterator_traits<Iter>::value_type> | 
 | IsSupersetOf(Iter first, Iter last) { | 
 |   typedef typename ::std::iterator_traits<Iter>::value_type T; | 
 |   return internal::UnorderedElementsAreArrayMatcher<T>( | 
 |       internal::UnorderedMatcherRequire::Superset, first, last); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( | 
 |     const T* pointer, size_t count) { | 
 |   return IsSupersetOf(pointer, pointer + count); | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( | 
 |     const T (&array)[N]) { | 
 |   return IsSupersetOf(array, N); | 
 | } | 
 |  | 
 | template <typename Container> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename Container::value_type> | 
 | IsSupersetOf(const Container& container) { | 
 |   return IsSupersetOf(container.begin(), container.end()); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( | 
 |     ::std::initializer_list<T> xs) { | 
 |   return IsSupersetOf(xs.begin(), xs.end()); | 
 | } | 
 |  | 
 | // IsSubsetOf(iterator_first, iterator_last) | 
 | // IsSubsetOf(pointer, count) | 
 | // IsSubsetOf(array) | 
 | // IsSubsetOf(container) | 
 | // IsSubsetOf({e1, e2, ..., en}) | 
 | // | 
 | // IsSubsetOf() verifies that an injective mapping onto a collection of matchers | 
 | // exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and | 
 | // only if there is a subset of matchers {m1, ..., mk} which would match the | 
 | // container using UnorderedElementsAre.  Obviously, the size of the container | 
 | // must be <= n in order to have a match. Examples: | 
 | // | 
 | // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). | 
 | // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 | 
 | //   matches Lt(0). | 
 | // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both | 
 | //   match Gt(0). The reason is that different matchers must be used for | 
 | //   elements in different slots of the container. | 
 | // | 
 | // The matchers can be specified as an array, a pointer and count, a container, | 
 | // an initializer list, or an STL iterator range. In each of these cases, the | 
 | // underlying matchers can be either values or matchers. | 
 |  | 
 | template <typename Iter> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename ::std::iterator_traits<Iter>::value_type> | 
 | IsSubsetOf(Iter first, Iter last) { | 
 |   typedef typename ::std::iterator_traits<Iter>::value_type T; | 
 |   return internal::UnorderedElementsAreArrayMatcher<T>( | 
 |       internal::UnorderedMatcherRequire::Subset, first, last); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( | 
 |     const T* pointer, size_t count) { | 
 |   return IsSubsetOf(pointer, pointer + count); | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( | 
 |     const T (&array)[N]) { | 
 |   return IsSubsetOf(array, N); | 
 | } | 
 |  | 
 | template <typename Container> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename Container::value_type> | 
 | IsSubsetOf(const Container& container) { | 
 |   return IsSubsetOf(container.begin(), container.end()); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( | 
 |     ::std::initializer_list<T> xs) { | 
 |   return IsSubsetOf(xs.begin(), xs.end()); | 
 | } | 
 |  | 
 | // Matches an STL-style container or a native array that contains only | 
 | // elements matching the given value or matcher. | 
 | // | 
 | // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only | 
 | // the messages are different. | 
 | // | 
 | // Examples: | 
 | //   ::std::set<int> page_ids; | 
 | //   // Each(m) matches an empty container, regardless of what m is. | 
 | //   EXPECT_THAT(page_ids, Each(Eq(1))); | 
 | //   EXPECT_THAT(page_ids, Each(Eq(77))); | 
 | // | 
 | //   page_ids.insert(3); | 
 | //   EXPECT_THAT(page_ids, Each(Gt(0))); | 
 | //   EXPECT_THAT(page_ids, Not(Each(Gt(4)))); | 
 | //   page_ids.insert(1); | 
 | //   EXPECT_THAT(page_ids, Not(Each(Lt(2)))); | 
 | // | 
 | //   ::std::map<int, size_t> page_lengths; | 
 | //   page_lengths[1] = 100; | 
 | //   page_lengths[2] = 200; | 
 | //   page_lengths[3] = 300; | 
 | //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); | 
 | //   EXPECT_THAT(page_lengths, Each(Key(Le(3)))); | 
 | // | 
 | //   const char* user_ids[] = { "joe", "mike", "tom" }; | 
 | //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); | 
 | template <typename M> | 
 | inline internal::EachMatcher<M> Each(M matcher) { | 
 |   return internal::EachMatcher<M>(matcher); | 
 | } | 
 |  | 
 | // Key(inner_matcher) matches an std::pair whose 'first' field matches | 
 | // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an | 
 | // std::map that contains at least one element whose key is >= 5. | 
 | template <typename M> | 
 | inline internal::KeyMatcher<M> Key(M inner_matcher) { | 
 |   return internal::KeyMatcher<M>(inner_matcher); | 
 | } | 
 |  | 
 | // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field | 
 | // matches first_matcher and whose 'second' field matches second_matcher.  For | 
 | // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used | 
 | // to match a std::map<int, string> that contains exactly one element whose key | 
 | // is >= 5 and whose value equals "foo". | 
 | template <typename FirstMatcher, typename SecondMatcher> | 
 | inline internal::PairMatcher<FirstMatcher, SecondMatcher> | 
 | Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { | 
 |   return internal::PairMatcher<FirstMatcher, SecondMatcher>( | 
 |       first_matcher, second_matcher); | 
 | } | 
 |  | 
 | namespace no_adl { | 
 | // FieldsAre(matchers...) matches piecewise the fields of compatible structs. | 
 | // These include those that support `get<I>(obj)`, and when structured bindings | 
 | // are enabled any class that supports them. | 
 | // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types. | 
 | template <typename... M> | 
 | internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre( | 
 |     M&&... matchers) { | 
 |   return internal::FieldsAreMatcher<typename std::decay<M>::type...>( | 
 |       std::forward<M>(matchers)...); | 
 | } | 
 |  | 
 | // Creates a matcher that matches a pointer (raw or smart) that matches | 
 | // inner_matcher. | 
 | template <typename InnerMatcher> | 
 | inline internal::PointerMatcher<InnerMatcher> Pointer( | 
 |     const InnerMatcher& inner_matcher) { | 
 |   return internal::PointerMatcher<InnerMatcher>(inner_matcher); | 
 | } | 
 |  | 
 | // Creates a matcher that matches an object that has an address that matches | 
 | // inner_matcher. | 
 | template <typename InnerMatcher> | 
 | inline internal::AddressMatcher<InnerMatcher> Address( | 
 |     const InnerMatcher& inner_matcher) { | 
 |   return internal::AddressMatcher<InnerMatcher>(inner_matcher); | 
 | } | 
 | }  // namespace no_adl | 
 |  | 
 | // Returns a predicate that is satisfied by anything that matches the | 
 | // given matcher. | 
 | template <typename M> | 
 | inline internal::MatcherAsPredicate<M> Matches(M matcher) { | 
 |   return internal::MatcherAsPredicate<M>(matcher); | 
 | } | 
 |  | 
 | // Returns true if and only if the value matches the matcher. | 
 | template <typename T, typename M> | 
 | inline bool Value(const T& value, M matcher) { | 
 |   return testing::Matches(matcher)(value); | 
 | } | 
 |  | 
 | // Matches the value against the given matcher and explains the match | 
 | // result to listener. | 
 | template <typename T, typename M> | 
 | inline bool ExplainMatchResult( | 
 |     M matcher, const T& value, MatchResultListener* listener) { | 
 |   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); | 
 | } | 
 |  | 
 | // Returns a string representation of the given matcher.  Useful for description | 
 | // strings of matchers defined using MATCHER_P* macros that accept matchers as | 
 | // their arguments.  For example: | 
 | // | 
 | // MATCHER_P(XAndYThat, matcher, | 
 | //           "X that " + DescribeMatcher<int>(matcher, negation) + | 
 | //               " and Y that " + DescribeMatcher<double>(matcher, negation)) { | 
 | //   return ExplainMatchResult(matcher, arg.x(), result_listener) && | 
 | //          ExplainMatchResult(matcher, arg.y(), result_listener); | 
 | // } | 
 | template <typename T, typename M> | 
 | std::string DescribeMatcher(const M& matcher, bool negation = false) { | 
 |   ::std::stringstream ss; | 
 |   Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); | 
 |   if (negation) { | 
 |     monomorphic_matcher.DescribeNegationTo(&ss); | 
 |   } else { | 
 |     monomorphic_matcher.DescribeTo(&ss); | 
 |   } | 
 |   return ss.str(); | 
 | } | 
 |  | 
 | template <typename... Args> | 
 | internal::ElementsAreMatcher< | 
 |     std::tuple<typename std::decay<const Args&>::type...>> | 
 | ElementsAre(const Args&... matchers) { | 
 |   return internal::ElementsAreMatcher< | 
 |       std::tuple<typename std::decay<const Args&>::type...>>( | 
 |       std::make_tuple(matchers...)); | 
 | } | 
 |  | 
 | template <typename... Args> | 
 | internal::UnorderedElementsAreMatcher< | 
 |     std::tuple<typename std::decay<const Args&>::type...>> | 
 | UnorderedElementsAre(const Args&... matchers) { | 
 |   return internal::UnorderedElementsAreMatcher< | 
 |       std::tuple<typename std::decay<const Args&>::type...>>( | 
 |       std::make_tuple(matchers...)); | 
 | } | 
 |  | 
 | // Define variadic matcher versions. | 
 | template <typename... Args> | 
 | internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( | 
 |     const Args&... matchers) { | 
 |   return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( | 
 |       matchers...); | 
 | } | 
 |  | 
 | template <typename... Args> | 
 | internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( | 
 |     const Args&... matchers) { | 
 |   return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( | 
 |       matchers...); | 
 | } | 
 |  | 
 | // AnyOfArray(array) | 
 | // AnyOfArray(pointer, count) | 
 | // AnyOfArray(container) | 
 | // AnyOfArray({ e1, e2, ..., en }) | 
 | // AnyOfArray(iterator_first, iterator_last) | 
 | // | 
 | // AnyOfArray() verifies whether a given value matches any member of a | 
 | // collection of matchers. | 
 | // | 
 | // AllOfArray(array) | 
 | // AllOfArray(pointer, count) | 
 | // AllOfArray(container) | 
 | // AllOfArray({ e1, e2, ..., en }) | 
 | // AllOfArray(iterator_first, iterator_last) | 
 | // | 
 | // AllOfArray() verifies whether a given value matches all members of a | 
 | // collection of matchers. | 
 | // | 
 | // The matchers can be specified as an array, a pointer and count, a container, | 
 | // an initializer list, or an STL iterator range. In each of these cases, the | 
 | // underlying matchers can be either values or matchers. | 
 |  | 
 | template <typename Iter> | 
 | inline internal::AnyOfArrayMatcher< | 
 |     typename ::std::iterator_traits<Iter>::value_type> | 
 | AnyOfArray(Iter first, Iter last) { | 
 |   return internal::AnyOfArrayMatcher< | 
 |       typename ::std::iterator_traits<Iter>::value_type>(first, last); | 
 | } | 
 |  | 
 | template <typename Iter> | 
 | inline internal::AllOfArrayMatcher< | 
 |     typename ::std::iterator_traits<Iter>::value_type> | 
 | AllOfArray(Iter first, Iter last) { | 
 |   return internal::AllOfArrayMatcher< | 
 |       typename ::std::iterator_traits<Iter>::value_type>(first, last); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { | 
 |   return AnyOfArray(ptr, ptr + count); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { | 
 |   return AllOfArray(ptr, ptr + count); | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { | 
 |   return AnyOfArray(array, N); | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { | 
 |   return AllOfArray(array, N); | 
 | } | 
 |  | 
 | template <typename Container> | 
 | inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( | 
 |     const Container& container) { | 
 |   return AnyOfArray(container.begin(), container.end()); | 
 | } | 
 |  | 
 | template <typename Container> | 
 | inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( | 
 |     const Container& container) { | 
 |   return AllOfArray(container.begin(), container.end()); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::AnyOfArrayMatcher<T> AnyOfArray( | 
 |     ::std::initializer_list<T> xs) { | 
 |   return AnyOfArray(xs.begin(), xs.end()); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::AllOfArrayMatcher<T> AllOfArray( | 
 |     ::std::initializer_list<T> xs) { | 
 |   return AllOfArray(xs.begin(), xs.end()); | 
 | } | 
 |  | 
 | // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected | 
 | // fields of it matches a_matcher.  C++ doesn't support default | 
 | // arguments for function templates, so we have to overload it. | 
 | template <size_t... k, typename InnerMatcher> | 
 | internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( | 
 |     InnerMatcher&& matcher) { | 
 |   return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( | 
 |       std::forward<InnerMatcher>(matcher)); | 
 | } | 
 |  | 
 | // AllArgs(m) is a synonym of m.  This is useful in | 
 | // | 
 | //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); | 
 | // | 
 | // which is easier to read than | 
 | // | 
 | //   EXPECT_CALL(foo, Bar(_, _)).With(Eq()); | 
 | template <typename InnerMatcher> | 
 | inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } | 
 |  | 
 | // Returns a matcher that matches the value of an optional<> type variable. | 
 | // The matcher implementation only uses '!arg' and requires that the optional<> | 
 | // type has a 'value_type' member type and that '*arg' is of type 'value_type' | 
 | // and is printable using 'PrintToString'. It is compatible with | 
 | // std::optional/std::experimental::optional. | 
 | // Note that to compare an optional type variable against nullopt you should | 
 | // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the | 
 | // optional value contains an optional itself. | 
 | template <typename ValueMatcher> | 
 | inline internal::OptionalMatcher<ValueMatcher> Optional( | 
 |     const ValueMatcher& value_matcher) { | 
 |   return internal::OptionalMatcher<ValueMatcher>(value_matcher); | 
 | } | 
 |  | 
 | // Returns a matcher that matches the value of a absl::any type variable. | 
 | template <typename T> | 
 | PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( | 
 |     const Matcher<const T&>& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); | 
 | } | 
 |  | 
 | // Returns a matcher that matches the value of a variant<> type variable. | 
 | // The matcher implementation uses ADL to find the holds_alternative and get | 
 | // functions. | 
 | // It is compatible with std::variant. | 
 | template <typename T> | 
 | PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( | 
 |     const Matcher<const T&>& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::variant_matcher::VariantMatcher<T>(matcher)); | 
 | } | 
 |  | 
 | #if GTEST_HAS_EXCEPTIONS | 
 |  | 
 | // Anything inside the `internal` namespace is internal to the implementation | 
 | // and must not be used in user code! | 
 | namespace internal { | 
 |  | 
 | class WithWhatMatcherImpl { | 
 |  public: | 
 |   WithWhatMatcherImpl(Matcher<std::string> matcher) | 
 |       : matcher_(std::move(matcher)) {} | 
 |  | 
 |   void DescribeTo(std::ostream* os) const { | 
 |     *os << "contains .what() that "; | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(std::ostream* os) const { | 
 |     *os << "contains .what() that does not "; | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   template <typename Err> | 
 |   bool MatchAndExplain(const Err& err, MatchResultListener* listener) const { | 
 |     *listener << "which contains .what() that "; | 
 |     return matcher_.MatchAndExplain(err.what(), listener); | 
 |   } | 
 |  | 
 |  private: | 
 |   const Matcher<std::string> matcher_; | 
 | }; | 
 |  | 
 | inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat( | 
 |     Matcher<std::string> m) { | 
 |   return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m))); | 
 | } | 
 |  | 
 | template <typename Err> | 
 | class ExceptionMatcherImpl { | 
 |   class NeverThrown { | 
 |    public: | 
 |     const char* what() const noexcept { | 
 |       return "this exception should never be thrown"; | 
 |     } | 
 |   }; | 
 |  | 
 |   // If the matchee raises an exception of a wrong type, we'd like to | 
 |   // catch it and print its message and type. To do that, we add an additional | 
 |   // catch clause: | 
 |   // | 
 |   //     try { ... } | 
 |   //     catch (const Err&) { /* an expected exception */ } | 
 |   //     catch (const std::exception&) { /* exception of a wrong type */ } | 
 |   // | 
 |   // However, if the `Err` itself is `std::exception`, we'd end up with two | 
 |   // identical `catch` clauses: | 
 |   // | 
 |   //     try { ... } | 
 |   //     catch (const std::exception&) { /* an expected exception */ } | 
 |   //     catch (const std::exception&) { /* exception of a wrong type */ } | 
 |   // | 
 |   // This can cause a warning or an error in some compilers. To resolve | 
 |   // the issue, we use a fake error type whenever `Err` is `std::exception`: | 
 |   // | 
 |   //     try { ... } | 
 |   //     catch (const std::exception&) { /* an expected exception */ } | 
 |   //     catch (const NeverThrown&) { /* exception of a wrong type */ } | 
 |   using DefaultExceptionType = typename std::conditional< | 
 |       std::is_same<typename std::remove_cv< | 
 |                        typename std::remove_reference<Err>::type>::type, | 
 |                    std::exception>::value, | 
 |       const NeverThrown&, const std::exception&>::type; | 
 |  | 
 |  public: | 
 |   ExceptionMatcherImpl(Matcher<const Err&> matcher) | 
 |       : matcher_(std::move(matcher)) {} | 
 |  | 
 |   void DescribeTo(std::ostream* os) const { | 
 |     *os << "throws an exception which is a " << GetTypeName<Err>(); | 
 |     *os << " which "; | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(std::ostream* os) const { | 
 |     *os << "throws an exception which is not a " << GetTypeName<Err>(); | 
 |     *os << " which "; | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   template <typename T> | 
 |   bool MatchAndExplain(T&& x, MatchResultListener* listener) const { | 
 |     try { | 
 |       (void)(std::forward<T>(x)()); | 
 |     } catch (const Err& err) { | 
 |       *listener << "throws an exception which is a " << GetTypeName<Err>(); | 
 |       *listener << " "; | 
 |       return matcher_.MatchAndExplain(err, listener); | 
 |     } catch (DefaultExceptionType err) { | 
 | #if GTEST_HAS_RTTI | 
 |       *listener << "throws an exception of type " << GetTypeName(typeid(err)); | 
 |       *listener << " "; | 
 | #else | 
 |       *listener << "throws an std::exception-derived type "; | 
 | #endif | 
 |       *listener << "with description \"" << err.what() << "\""; | 
 |       return false; | 
 |     } catch (...) { | 
 |       *listener << "throws an exception of an unknown type"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     *listener << "does not throw any exception"; | 
 |     return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   const Matcher<const Err&> matcher_; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // Throws() | 
 | // Throws(exceptionMatcher) | 
 | // ThrowsMessage(messageMatcher) | 
 | // | 
 | // This matcher accepts a callable and verifies that when invoked, it throws | 
 | // an exception with the given type and properties. | 
 | // | 
 | // Examples: | 
 | // | 
 | //   EXPECT_THAT( | 
 | //       []() { throw std::runtime_error("message"); }, | 
 | //       Throws<std::runtime_error>()); | 
 | // | 
 | //   EXPECT_THAT( | 
 | //       []() { throw std::runtime_error("message"); }, | 
 | //       ThrowsMessage<std::runtime_error>(HasSubstr("message"))); | 
 | // | 
 | //   EXPECT_THAT( | 
 | //       []() { throw std::runtime_error("message"); }, | 
 | //       Throws<std::runtime_error>( | 
 | //           Property(&std::runtime_error::what, HasSubstr("message")))); | 
 |  | 
 | template <typename Err> | 
 | PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::ExceptionMatcherImpl<Err>(A<const Err&>())); | 
 | } | 
 |  | 
 | template <typename Err, typename ExceptionMatcher> | 
 | PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws( | 
 |     const ExceptionMatcher& exception_matcher) { | 
 |   // Using matcher cast allows users to pass a matcher of a more broad type. | 
 |   // For example user may want to pass Matcher<std::exception> | 
 |   // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>. | 
 |   return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>( | 
 |       SafeMatcherCast<const Err&>(exception_matcher))); | 
 | } | 
 |  | 
 | template <typename Err, typename MessageMatcher> | 
 | PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage( | 
 |     MessageMatcher&& message_matcher) { | 
 |   static_assert(std::is_base_of<std::exception, Err>::value, | 
 |                 "expected an std::exception-derived type"); | 
 |   return Throws<Err>(internal::WithWhat( | 
 |       MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher)))); | 
 | } | 
 |  | 
 | #endif  // GTEST_HAS_EXCEPTIONS | 
 |  | 
 | // These macros allow using matchers to check values in Google Test | 
 | // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) | 
 | // succeed if and only if the value matches the matcher.  If the assertion | 
 | // fails, the value and the description of the matcher will be printed. | 
 | #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ | 
 |     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) | 
 | #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ | 
 |     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) | 
 |  | 
 | // MATCHER* macroses itself are listed below. | 
 | #define MATCHER(name, description)                                             \ | 
 |   class name##Matcher                                                          \ | 
 |       : public ::testing::internal::MatcherBaseImpl<name##Matcher> {           \ | 
 |    public:                                                                     \ | 
 |     template <typename arg_type>                                               \ | 
 |     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \ | 
 |      public:                                                                   \ | 
 |       gmock_Impl() {}                                                          \ | 
 |       bool MatchAndExplain(                                                    \ | 
 |           const arg_type& arg,                                                 \ | 
 |           ::testing::MatchResultListener* result_listener) const override;     \ | 
 |       void DescribeTo(::std::ostream* gmock_os) const override {               \ | 
 |         *gmock_os << FormatDescription(false);                                 \ | 
 |       }                                                                        \ | 
 |       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \ | 
 |         *gmock_os << FormatDescription(true);                                  \ | 
 |       }                                                                        \ | 
 |                                                                                \ | 
 |      private:                                                                  \ | 
 |       ::std::string FormatDescription(bool negation) const {                   \ | 
 |         ::std::string gmock_description = (description);                       \ | 
 |         if (!gmock_description.empty()) {                                      \ | 
 |           return gmock_description;                                            \ | 
 |         }                                                                      \ | 
 |         return ::testing::internal::FormatMatcherDescription(negation, #name,  \ | 
 |                                                              {});              \ | 
 |       }                                                                        \ | 
 |     };                                                                         \ | 
 |   };                                                                           \ | 
 |   GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; }           \ | 
 |   template <typename arg_type>                                                 \ | 
 |   bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(                   \ | 
 |       const arg_type& arg,                                                     \ | 
 |       ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \ | 
 |       const | 
 |  | 
 | #define MATCHER_P(name, p0, description) \ | 
 |   GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0)) | 
 | #define MATCHER_P2(name, p0, p1, description) \ | 
 |   GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1)) | 
 | #define MATCHER_P3(name, p0, p1, p2, description) \ | 
 |   GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2)) | 
 | #define MATCHER_P4(name, p0, p1, p2, p3, description) \ | 
 |   GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3)) | 
 | #define MATCHER_P5(name, p0, p1, p2, p3, p4, description)    \ | 
 |   GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \ | 
 |                          (p0, p1, p2, p3, p4)) | 
 | #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \ | 
 |   GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description,  \ | 
 |                          (p0, p1, p2, p3, p4, p5)) | 
 | #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \ | 
 |   GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description,      \ | 
 |                          (p0, p1, p2, p3, p4, p5, p6)) | 
 | #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \ | 
 |   GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description,          \ | 
 |                          (p0, p1, p2, p3, p4, p5, p6, p7)) | 
 | #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \ | 
 |   GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description,              \ | 
 |                          (p0, p1, p2, p3, p4, p5, p6, p7, p8)) | 
 | #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \ | 
 |   GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description,                  \ | 
 |                          (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) | 
 |  | 
 | #define GMOCK_INTERNAL_MATCHER(name, full_name, description, args)             \ | 
 |   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \ | 
 |   class full_name : public ::testing::internal::MatcherBaseImpl<               \ | 
 |                         full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \ | 
 |    public:                                                                     \ | 
 |     using full_name::MatcherBaseImpl::MatcherBaseImpl;                         \ | 
 |     template <typename arg_type>                                               \ | 
 |     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \ | 
 |      public:                                                                   \ | 
 |       explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args))          \ | 
 |           : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {}                       \ | 
 |       bool MatchAndExplain(                                                    \ | 
 |           const arg_type& arg,                                                 \ | 
 |           ::testing::MatchResultListener* result_listener) const override;     \ | 
 |       void DescribeTo(::std::ostream* gmock_os) const override {               \ | 
 |         *gmock_os << FormatDescription(false);                                 \ | 
 |       }                                                                        \ | 
 |       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \ | 
 |         *gmock_os << FormatDescription(true);                                  \ | 
 |       }                                                                        \ | 
 |       GMOCK_INTERNAL_MATCHER_MEMBERS(args)                                     \ | 
 |                                                                                \ | 
 |      private:                                                                  \ | 
 |       ::std::string FormatDescription(bool negation) const {                   \ | 
 |         ::std::string gmock_description = (description);                       \ | 
 |         if (!gmock_description.empty()) {                                      \ | 
 |           return gmock_description;                                            \ | 
 |         }                                                                      \ | 
 |         return ::testing::internal::FormatMatcherDescription(                  \ | 
 |             negation, #name,                                                   \ | 
 |             ::testing::internal::UniversalTersePrintTupleFieldsToStrings(      \ | 
 |                 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(        \ | 
 |                     GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args))));             \ | 
 |       }                                                                        \ | 
 |     };                                                                         \ | 
 |   };                                                                           \ | 
 |   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \ | 
 |   inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name(             \ | 
 |       GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) {                            \ | 
 |     return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(                \ | 
 |         GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args));                              \ | 
 |   }                                                                            \ | 
 |   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \ | 
 |   template <typename arg_type>                                                 \ | 
 |   bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl<        \ | 
 |       arg_type>::MatchAndExplain(const arg_type& arg,                          \ | 
 |                                  ::testing::MatchResultListener*               \ | 
 |                                      result_listener GTEST_ATTRIBUTE_UNUSED_)  \ | 
 |       const | 
 |  | 
 | #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \ | 
 |   GMOCK_PP_TAIL(                                     \ | 
 |       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args)) | 
 | #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \ | 
 |   , typename arg##_type | 
 |  | 
 | #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args)) | 
 | #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \ | 
 |   , arg##_type | 
 |  | 
 | #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \ | 
 |   GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH(     \ | 
 |       GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args)) | 
 | #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \ | 
 |   , arg##_type gmock_p##i | 
 |  | 
 | #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args)) | 
 | #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \ | 
 |   , arg(::std::forward<arg##_type>(gmock_p##i)) | 
 |  | 
 | #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ | 
 |   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args) | 
 | #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \ | 
 |   const arg##_type arg; | 
 |  | 
 | #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args)) | 
 | #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg | 
 |  | 
 | #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args)) | 
 | #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \ | 
 |   , gmock_p##i | 
 |  | 
 | // To prevent ADL on certain functions we put them on a separate namespace. | 
 | using namespace no_adl;  // NOLINT | 
 |  | 
 | }  // namespace testing | 
 |  | 
 | GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 5046 | 
 |  | 
 | // Include any custom callback matchers added by the local installation. | 
 | // We must include this header at the end to make sure it can use the | 
 | // declarations from this file. | 
 | // Copyright 2015, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Injection point for custom user configurations. See README for details | 
 | // | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ | 
 |  | 
 | #if GTEST_HAS_EXCEPTIONS | 
 | # include <stdexcept>  // NOLINT | 
 | #endif | 
 |  | 
 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ | 
 | /* class A needs to have dll-interface to be used by clients of class B */) | 
 |  | 
 | namespace testing { | 
 |  | 
 | // An abstract handle of an expectation. | 
 | class Expectation; | 
 |  | 
 | // A set of expectation handles. | 
 | class ExpectationSet; | 
 |  | 
 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION | 
 | // and MUST NOT BE USED IN USER CODE!!! | 
 | namespace internal { | 
 |  | 
 | // Implements a mock function. | 
 | template <typename F> class FunctionMocker; | 
 |  | 
 | // Base class for expectations. | 
 | class ExpectationBase; | 
 |  | 
 | // Implements an expectation. | 
 | template <typename F> class TypedExpectation; | 
 |  | 
 | // Helper class for testing the Expectation class template. | 
 | class ExpectationTester; | 
 |  | 
 | // Helper classes for implementing NiceMock, StrictMock, and NaggyMock. | 
 | template <typename MockClass> | 
 | class NiceMockImpl; | 
 | template <typename MockClass> | 
 | class StrictMockImpl; | 
 | template <typename MockClass> | 
 | class NaggyMockImpl; | 
 |  | 
 | // Protects the mock object registry (in class Mock), all function | 
 | // mockers, and all expectations. | 
 | // | 
 | // The reason we don't use more fine-grained protection is: when a | 
 | // mock function Foo() is called, it needs to consult its expectations | 
 | // to see which one should be picked.  If another thread is allowed to | 
 | // call a mock function (either Foo() or a different one) at the same | 
 | // time, it could affect the "retired" attributes of Foo()'s | 
 | // expectations when InSequence() is used, and thus affect which | 
 | // expectation gets picked.  Therefore, we sequence all mock function | 
 | // calls to ensure the integrity of the mock objects' states. | 
 | GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex); | 
 |  | 
 | // Untyped base class for ActionResultHolder<R>. | 
 | class UntypedActionResultHolderBase; | 
 |  | 
 | // Abstract base class of FunctionMocker.  This is the | 
 | // type-agnostic part of the function mocker interface.  Its pure | 
 | // virtual methods are implemented by FunctionMocker. | 
 | class GTEST_API_ UntypedFunctionMockerBase { | 
 |  public: | 
 |   UntypedFunctionMockerBase(); | 
 |   virtual ~UntypedFunctionMockerBase(); | 
 |  | 
 |   // Verifies that all expectations on this mock function have been | 
 |   // satisfied.  Reports one or more Google Test non-fatal failures | 
 |   // and returns false if not. | 
 |   bool VerifyAndClearExpectationsLocked() | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); | 
 |  | 
 |   // Clears the ON_CALL()s set on this mock function. | 
 |   virtual void ClearDefaultActionsLocked() | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0; | 
 |  | 
 |   // In all of the following Untyped* functions, it's the caller's | 
 |   // responsibility to guarantee the correctness of the arguments' | 
 |   // types. | 
 |  | 
 |   // Performs the default action with the given arguments and returns | 
 |   // the action's result.  The call description string will be used in | 
 |   // the error message to describe the call in the case the default | 
 |   // action fails. | 
 |   // L = * | 
 |   virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction( | 
 |       void* untyped_args, const std::string& call_description) const = 0; | 
 |  | 
 |   // Performs the given action with the given arguments and returns | 
 |   // the action's result. | 
 |   // L = * | 
 |   virtual UntypedActionResultHolderBase* UntypedPerformAction( | 
 |       const void* untyped_action, void* untyped_args) const = 0; | 
 |  | 
 |   // Writes a message that the call is uninteresting (i.e. neither | 
 |   // explicitly expected nor explicitly unexpected) to the given | 
 |   // ostream. | 
 |   virtual void UntypedDescribeUninterestingCall( | 
 |       const void* untyped_args, | 
 |       ::std::ostream* os) const | 
 |           GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0; | 
 |  | 
 |   // Returns the expectation that matches the given function arguments | 
 |   // (or NULL is there's no match); when a match is found, | 
 |   // untyped_action is set to point to the action that should be | 
 |   // performed (or NULL if the action is "do default"), and | 
 |   // is_excessive is modified to indicate whether the call exceeds the | 
 |   // expected number. | 
 |   virtual const ExpectationBase* UntypedFindMatchingExpectation( | 
 |       const void* untyped_args, | 
 |       const void** untyped_action, bool* is_excessive, | 
 |       ::std::ostream* what, ::std::ostream* why) | 
 |           GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0; | 
 |  | 
 |   // Prints the given function arguments to the ostream. | 
 |   virtual void UntypedPrintArgs(const void* untyped_args, | 
 |                                 ::std::ostream* os) const = 0; | 
 |  | 
 |   // Sets the mock object this mock method belongs to, and registers | 
 |   // this information in the global mock registry.  Will be called | 
 |   // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock | 
 |   // method. | 
 |   void RegisterOwner(const void* mock_obj) | 
 |       GTEST_LOCK_EXCLUDED_(g_gmock_mutex); | 
 |  | 
 |   // Sets the mock object this mock method belongs to, and sets the | 
 |   // name of the mock function.  Will be called upon each invocation | 
 |   // of this mock function. | 
 |   void SetOwnerAndName(const void* mock_obj, const char* name) | 
 |       GTEST_LOCK_EXCLUDED_(g_gmock_mutex); | 
 |  | 
 |   // Returns the mock object this mock method belongs to.  Must be | 
 |   // called after RegisterOwner() or SetOwnerAndName() has been | 
 |   // called. | 
 |   const void* MockObject() const | 
 |       GTEST_LOCK_EXCLUDED_(g_gmock_mutex); | 
 |  | 
 |   // Returns the name of this mock method.  Must be called after | 
 |   // SetOwnerAndName() has been called. | 
 |   const char* Name() const | 
 |       GTEST_LOCK_EXCLUDED_(g_gmock_mutex); | 
 |  | 
 |   // Returns the result of invoking this mock function with the given | 
 |   // arguments.  This function can be safely called from multiple | 
 |   // threads concurrently.  The caller is responsible for deleting the | 
 |   // result. | 
 |   UntypedActionResultHolderBase* UntypedInvokeWith(void* untyped_args) | 
 |       GTEST_LOCK_EXCLUDED_(g_gmock_mutex); | 
 |  | 
 |  protected: | 
 |   typedef std::vector<const void*> UntypedOnCallSpecs; | 
 |  | 
 |   using UntypedExpectations = std::vector<std::shared_ptr<ExpectationBase>>; | 
 |  | 
 |   // Returns an Expectation object that references and co-owns exp, | 
 |   // which must be an expectation on this mock function. | 
 |   Expectation GetHandleOf(ExpectationBase* exp); | 
 |  | 
 |   // Address of the mock object this mock method belongs to.  Only | 
 |   // valid after this mock method has been called or | 
 |   // ON_CALL/EXPECT_CALL has been invoked on it. | 
 |   const void* mock_obj_;  // Protected by g_gmock_mutex. | 
 |  | 
 |   // Name of the function being mocked.  Only valid after this mock | 
 |   // method has been called. | 
 |   const char* name_;  // Protected by g_gmock_mutex. | 
 |  | 
 |   // All default action specs for this function mocker. | 
 |   UntypedOnCallSpecs untyped_on_call_specs_; | 
 |  | 
 |   // All expectations for this function mocker. | 
 |   // | 
 |   // It's undefined behavior to interleave expectations (EXPECT_CALLs | 
 |   // or ON_CALLs) and mock function calls.  Also, the order of | 
 |   // expectations is important.  Therefore it's a logic race condition | 
 |   // to read/write untyped_expectations_ concurrently.  In order for | 
 |   // tools like tsan to catch concurrent read/write accesses to | 
 |   // untyped_expectations, we deliberately leave accesses to it | 
 |   // unprotected. | 
 |   UntypedExpectations untyped_expectations_; | 
 | };  // class UntypedFunctionMockerBase | 
 |  | 
 | // Untyped base class for OnCallSpec<F>. | 
 | class UntypedOnCallSpecBase { | 
 |  public: | 
 |   // The arguments are the location of the ON_CALL() statement. | 
 |   UntypedOnCallSpecBase(const char* a_file, int a_line) | 
 |       : file_(a_file), line_(a_line), last_clause_(kNone) {} | 
 |  | 
 |   // Where in the source file was the default action spec defined? | 
 |   const char* file() const { return file_; } | 
 |   int line() const { return line_; } | 
 |  | 
 |  protected: | 
 |   // Gives each clause in the ON_CALL() statement a name. | 
 |   enum Clause { | 
 |     // Do not change the order of the enum members!  The run-time | 
 |     // syntax checking relies on it. | 
 |     kNone, | 
 |     kWith, | 
 |     kWillByDefault | 
 |   }; | 
 |  | 
 |   // Asserts that the ON_CALL() statement has a certain property. | 
 |   void AssertSpecProperty(bool property, | 
 |                           const std::string& failure_message) const { | 
 |     Assert(property, file_, line_, failure_message); | 
 |   } | 
 |  | 
 |   // Expects that the ON_CALL() statement has a certain property. | 
 |   void ExpectSpecProperty(bool property, | 
 |                           const std::string& failure_message) const { | 
 |     Expect(property, file_, line_, failure_message); | 
 |   } | 
 |  | 
 |   const char* file_; | 
 |   int line_; | 
 |  | 
 |   // The last clause in the ON_CALL() statement as seen so far. | 
 |   // Initially kNone and changes as the statement is parsed. | 
 |   Clause last_clause_; | 
 | };  // class UntypedOnCallSpecBase | 
 |  | 
 | // This template class implements an ON_CALL spec. | 
 | template <typename F> | 
 | class OnCallSpec : public UntypedOnCallSpecBase { | 
 |  public: | 
 |   typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |   typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; | 
 |  | 
 |   // Constructs an OnCallSpec object from the information inside | 
 |   // the parenthesis of an ON_CALL() statement. | 
 |   OnCallSpec(const char* a_file, int a_line, | 
 |              const ArgumentMatcherTuple& matchers) | 
 |       : UntypedOnCallSpecBase(a_file, a_line), | 
 |         matchers_(matchers), | 
 |         // By default, extra_matcher_ should match anything.  However, | 
 |         // we cannot initialize it with _ as that causes ambiguity between | 
 |         // Matcher's copy and move constructor for some argument types. | 
 |         extra_matcher_(A<const ArgumentTuple&>()) {} | 
 |  | 
 |   // Implements the .With() clause. | 
 |   OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) { | 
 |     // Makes sure this is called at most once. | 
 |     ExpectSpecProperty(last_clause_ < kWith, | 
 |                        ".With() cannot appear " | 
 |                        "more than once in an ON_CALL()."); | 
 |     last_clause_ = kWith; | 
 |  | 
 |     extra_matcher_ = m; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Implements the .WillByDefault() clause. | 
 |   OnCallSpec& WillByDefault(const Action<F>& action) { | 
 |     ExpectSpecProperty(last_clause_ < kWillByDefault, | 
 |                        ".WillByDefault() must appear " | 
 |                        "exactly once in an ON_CALL()."); | 
 |     last_clause_ = kWillByDefault; | 
 |  | 
 |     ExpectSpecProperty(!action.IsDoDefault(), | 
 |                        "DoDefault() cannot be used in ON_CALL()."); | 
 |     action_ = action; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Returns true if and only if the given arguments match the matchers. | 
 |   bool Matches(const ArgumentTuple& args) const { | 
 |     return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); | 
 |   } | 
 |  | 
 |   // Returns the action specified by the user. | 
 |   const Action<F>& GetAction() const { | 
 |     AssertSpecProperty(last_clause_ == kWillByDefault, | 
 |                        ".WillByDefault() must appear exactly " | 
 |                        "once in an ON_CALL()."); | 
 |     return action_; | 
 |   } | 
 |  | 
 |  private: | 
 |   // The information in statement | 
 |   // | 
 |   //   ON_CALL(mock_object, Method(matchers)) | 
 |   //       .With(multi-argument-matcher) | 
 |   //       .WillByDefault(action); | 
 |   // | 
 |   // is recorded in the data members like this: | 
 |   // | 
 |   //   source file that contains the statement => file_ | 
 |   //   line number of the statement            => line_ | 
 |   //   matchers                                => matchers_ | 
 |   //   multi-argument-matcher                  => extra_matcher_ | 
 |   //   action                                  => action_ | 
 |   ArgumentMatcherTuple matchers_; | 
 |   Matcher<const ArgumentTuple&> extra_matcher_; | 
 |   Action<F> action_; | 
 | };  // class OnCallSpec | 
 |  | 
 | // Possible reactions on uninteresting calls. | 
 | enum CallReaction { | 
 |   kAllow, | 
 |   kWarn, | 
 |   kFail, | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // Utilities for manipulating mock objects. | 
 | class GTEST_API_ Mock { | 
 |  public: | 
 |   // The following public methods can be called concurrently. | 
 |  | 
 |   // Tells Google Mock to ignore mock_obj when checking for leaked | 
 |   // mock objects. | 
 |   static void AllowLeak(const void* mock_obj) | 
 |       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |  | 
 |   // Verifies and clears all expectations on the given mock object. | 
 |   // If the expectations aren't satisfied, generates one or more | 
 |   // Google Test non-fatal failures and returns false. | 
 |   static bool VerifyAndClearExpectations(void* mock_obj) | 
 |       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |  | 
 |   // Verifies all expectations on the given mock object and clears its | 
 |   // default actions and expectations.  Returns true if and only if the | 
 |   // verification was successful. | 
 |   static bool VerifyAndClear(void* mock_obj) | 
 |       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |  | 
 |   // Returns whether the mock was created as a naggy mock (default) | 
 |   static bool IsNaggy(void* mock_obj) | 
 |       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |   // Returns whether the mock was created as a nice mock | 
 |   static bool IsNice(void* mock_obj) | 
 |       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |   // Returns whether the mock was created as a strict mock | 
 |   static bool IsStrict(void* mock_obj) | 
 |       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |  | 
 |  private: | 
 |   friend class internal::UntypedFunctionMockerBase; | 
 |  | 
 |   // Needed for a function mocker to register itself (so that we know | 
 |   // how to clear a mock object). | 
 |   template <typename F> | 
 |   friend class internal::FunctionMocker; | 
 |  | 
 |   template <typename MockClass> | 
 |   friend class internal::NiceMockImpl; | 
 |   template <typename MockClass> | 
 |   friend class internal::NaggyMockImpl; | 
 |   template <typename MockClass> | 
 |   friend class internal::StrictMockImpl; | 
 |  | 
 |   // Tells Google Mock to allow uninteresting calls on the given mock | 
 |   // object. | 
 |   static void AllowUninterestingCalls(const void* mock_obj) | 
 |       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |  | 
 |   // Tells Google Mock to warn the user about uninteresting calls on | 
 |   // the given mock object. | 
 |   static void WarnUninterestingCalls(const void* mock_obj) | 
 |       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |  | 
 |   // Tells Google Mock to fail uninteresting calls on the given mock | 
 |   // object. | 
 |   static void FailUninterestingCalls(const void* mock_obj) | 
 |       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |  | 
 |   // Tells Google Mock the given mock object is being destroyed and | 
 |   // its entry in the call-reaction table should be removed. | 
 |   static void UnregisterCallReaction(const void* mock_obj) | 
 |       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |  | 
 |   // Returns the reaction Google Mock will have on uninteresting calls | 
 |   // made on the given mock object. | 
 |   static internal::CallReaction GetReactionOnUninterestingCalls( | 
 |       const void* mock_obj) | 
 |           GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |  | 
 |   // Verifies that all expectations on the given mock object have been | 
 |   // satisfied.  Reports one or more Google Test non-fatal failures | 
 |   // and returns false if not. | 
 |   static bool VerifyAndClearExpectationsLocked(void* mock_obj) | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); | 
 |  | 
 |   // Clears all ON_CALL()s set on the given mock object. | 
 |   static void ClearDefaultActionsLocked(void* mock_obj) | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); | 
 |  | 
 |   // Registers a mock object and a mock method it owns. | 
 |   static void Register( | 
 |       const void* mock_obj, | 
 |       internal::UntypedFunctionMockerBase* mocker) | 
 |           GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |  | 
 |   // Tells Google Mock where in the source code mock_obj is used in an | 
 |   // ON_CALL or EXPECT_CALL.  In case mock_obj is leaked, this | 
 |   // information helps the user identify which object it is. | 
 |   static void RegisterUseByOnCallOrExpectCall( | 
 |       const void* mock_obj, const char* file, int line) | 
 |           GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | 
 |  | 
 |   // Unregisters a mock method; removes the owning mock object from | 
 |   // the registry when the last mock method associated with it has | 
 |   // been unregistered.  This is called only in the destructor of | 
 |   // FunctionMocker. | 
 |   static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker) | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); | 
 | };  // class Mock | 
 |  | 
 | // An abstract handle of an expectation.  Useful in the .After() | 
 | // clause of EXPECT_CALL() for setting the (partial) order of | 
 | // expectations.  The syntax: | 
 | // | 
 | //   Expectation e1 = EXPECT_CALL(...)...; | 
 | //   EXPECT_CALL(...).After(e1)...; | 
 | // | 
 | // sets two expectations where the latter can only be matched after | 
 | // the former has been satisfied. | 
 | // | 
 | // Notes: | 
 | //   - This class is copyable and has value semantics. | 
 | //   - Constness is shallow: a const Expectation object itself cannot | 
 | //     be modified, but the mutable methods of the ExpectationBase | 
 | //     object it references can be called via expectation_base(). | 
 |  | 
 | class GTEST_API_ Expectation { | 
 |  public: | 
 |   // Constructs a null object that doesn't reference any expectation. | 
 |   Expectation(); | 
 |   Expectation(Expectation&&) = default; | 
 |   Expectation(const Expectation&) = default; | 
 |   Expectation& operator=(Expectation&&) = default; | 
 |   Expectation& operator=(const Expectation&) = default; | 
 |   ~Expectation(); | 
 |  | 
 |   // This single-argument ctor must not be explicit, in order to support the | 
 |   //   Expectation e = EXPECT_CALL(...); | 
 |   // syntax. | 
 |   // | 
 |   // A TypedExpectation object stores its pre-requisites as | 
 |   // Expectation objects, and needs to call the non-const Retire() | 
 |   // method on the ExpectationBase objects they reference.  Therefore | 
 |   // Expectation must receive a *non-const* reference to the | 
 |   // ExpectationBase object. | 
 |   Expectation(internal::ExpectationBase& exp);  // NOLINT | 
 |  | 
 |   // The compiler-generated copy ctor and operator= work exactly as | 
 |   // intended, so we don't need to define our own. | 
 |  | 
 |   // Returns true if and only if rhs references the same expectation as this | 
 |   // object does. | 
 |   bool operator==(const Expectation& rhs) const { | 
 |     return expectation_base_ == rhs.expectation_base_; | 
 |   } | 
 |  | 
 |   bool operator!=(const Expectation& rhs) const { return !(*this == rhs); } | 
 |  | 
 |  private: | 
 |   friend class ExpectationSet; | 
 |   friend class Sequence; | 
 |   friend class ::testing::internal::ExpectationBase; | 
 |   friend class ::testing::internal::UntypedFunctionMockerBase; | 
 |  | 
 |   template <typename F> | 
 |   friend class ::testing::internal::FunctionMocker; | 
 |  | 
 |   template <typename F> | 
 |   friend class ::testing::internal::TypedExpectation; | 
 |  | 
 |   // This comparator is needed for putting Expectation objects into a set. | 
 |   class Less { | 
 |    public: | 
 |     bool operator()(const Expectation& lhs, const Expectation& rhs) const { | 
 |       return lhs.expectation_base_.get() < rhs.expectation_base_.get(); | 
 |     } | 
 |   }; | 
 |  | 
 |   typedef ::std::set<Expectation, Less> Set; | 
 |  | 
 |   Expectation( | 
 |       const std::shared_ptr<internal::ExpectationBase>& expectation_base); | 
 |  | 
 |   // Returns the expectation this object references. | 
 |   const std::shared_ptr<internal::ExpectationBase>& expectation_base() const { | 
 |     return expectation_base_; | 
 |   } | 
 |  | 
 |   // A shared_ptr that co-owns the expectation this handle references. | 
 |   std::shared_ptr<internal::ExpectationBase> expectation_base_; | 
 | }; | 
 |  | 
 | // A set of expectation handles.  Useful in the .After() clause of | 
 | // EXPECT_CALL() for setting the (partial) order of expectations.  The | 
 | // syntax: | 
 | // | 
 | //   ExpectationSet es; | 
 | //   es += EXPECT_CALL(...)...; | 
 | //   es += EXPECT_CALL(...)...; | 
 | //   EXPECT_CALL(...).After(es)...; | 
 | // | 
 | // sets three expectations where the last one can only be matched | 
 | // after the first two have both been satisfied. | 
 | // | 
 | // This class is copyable and has value semantics. | 
 | class ExpectationSet { | 
 |  public: | 
 |   // A bidirectional iterator that can read a const element in the set. | 
 |   typedef Expectation::Set::const_iterator const_iterator; | 
 |  | 
 |   // An object stored in the set.  This is an alias of Expectation. | 
 |   typedef Expectation::Set::value_type value_type; | 
 |  | 
 |   // Constructs an empty set. | 
 |   ExpectationSet() {} | 
 |  | 
 |   // This single-argument ctor must not be explicit, in order to support the | 
 |   //   ExpectationSet es = EXPECT_CALL(...); | 
 |   // syntax. | 
 |   ExpectationSet(internal::ExpectationBase& exp) {  // NOLINT | 
 |     *this += Expectation(exp); | 
 |   } | 
 |  | 
 |   // This single-argument ctor implements implicit conversion from | 
 |   // Expectation and thus must not be explicit.  This allows either an | 
 |   // Expectation or an ExpectationSet to be used in .After(). | 
 |   ExpectationSet(const Expectation& e) {  // NOLINT | 
 |     *this += e; | 
 |   } | 
 |  | 
 |   // The compiler-generator ctor and operator= works exactly as | 
 |   // intended, so we don't need to define our own. | 
 |  | 
 |   // Returns true if and only if rhs contains the same set of Expectation | 
 |   // objects as this does. | 
 |   bool operator==(const ExpectationSet& rhs) const { | 
 |     return expectations_ == rhs.expectations_; | 
 |   } | 
 |  | 
 |   bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); } | 
 |  | 
 |   // Implements the syntax | 
 |   //   expectation_set += EXPECT_CALL(...); | 
 |   ExpectationSet& operator+=(const Expectation& e) { | 
 |     expectations_.insert(e); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   int size() const { return static_cast<int>(expectations_.size()); } | 
 |  | 
 |   const_iterator begin() const { return expectations_.begin(); } | 
 |   const_iterator end() const { return expectations_.end(); } | 
 |  | 
 |  private: | 
 |   Expectation::Set expectations_; | 
 | }; | 
 |  | 
 |  | 
 | // Sequence objects are used by a user to specify the relative order | 
 | // in which the expectations should match.  They are copyable (we rely | 
 | // on the compiler-defined copy constructor and assignment operator). | 
 | class GTEST_API_ Sequence { | 
 |  public: | 
 |   // Constructs an empty sequence. | 
 |   Sequence() : last_expectation_(new Expectation) {} | 
 |  | 
 |   // Adds an expectation to this sequence.  The caller must ensure | 
 |   // that no other thread is accessing this Sequence object. | 
 |   void AddExpectation(const Expectation& expectation) const; | 
 |  | 
 |  private: | 
 |   // The last expectation in this sequence. | 
 |   std::shared_ptr<Expectation> last_expectation_; | 
 | };  // class Sequence | 
 |  | 
 | // An object of this type causes all EXPECT_CALL() statements | 
 | // encountered in its scope to be put in an anonymous sequence.  The | 
 | // work is done in the constructor and destructor.  You should only | 
 | // create an InSequence object on the stack. | 
 | // | 
 | // The sole purpose for this class is to support easy definition of | 
 | // sequential expectations, e.g. | 
 | // | 
 | //   { | 
 | //     InSequence dummy;  // The name of the object doesn't matter. | 
 | // | 
 | //     // The following expectations must match in the order they appear. | 
 | //     EXPECT_CALL(a, Bar())...; | 
 | //     EXPECT_CALL(a, Baz())...; | 
 | //     ... | 
 | //     EXPECT_CALL(b, Xyz())...; | 
 | //   } | 
 | // | 
 | // You can create InSequence objects in multiple threads, as long as | 
 | // they are used to affect different mock objects.  The idea is that | 
 | // each thread can create and set up its own mocks as if it's the only | 
 | // thread.  However, for clarity of your tests we recommend you to set | 
 | // up mocks in the main thread unless you have a good reason not to do | 
 | // so. | 
 | class GTEST_API_ InSequence { | 
 |  public: | 
 |   InSequence(); | 
 |   ~InSequence(); | 
 |  private: | 
 |   bool sequence_created_; | 
 |  | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence);  // NOLINT | 
 | } GTEST_ATTRIBUTE_UNUSED_; | 
 |  | 
 | namespace internal { | 
 |  | 
 | // Points to the implicit sequence introduced by a living InSequence | 
 | // object (if any) in the current thread or NULL. | 
 | GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence; | 
 |  | 
 | // Base class for implementing expectations. | 
 | // | 
 | // There are two reasons for having a type-agnostic base class for | 
 | // Expectation: | 
 | // | 
 | //   1. We need to store collections of expectations of different | 
 | //   types (e.g. all pre-requisites of a particular expectation, all | 
 | //   expectations in a sequence).  Therefore these expectation objects | 
 | //   must share a common base class. | 
 | // | 
 | //   2. We can avoid binary code bloat by moving methods not depending | 
 | //   on the template argument of Expectation to the base class. | 
 | // | 
 | // This class is internal and mustn't be used by user code directly. | 
 | class GTEST_API_ ExpectationBase { | 
 |  public: | 
 |   // source_text is the EXPECT_CALL(...) source that created this Expectation. | 
 |   ExpectationBase(const char* file, int line, const std::string& source_text); | 
 |  | 
 |   virtual ~ExpectationBase(); | 
 |  | 
 |   // Where in the source file was the expectation spec defined? | 
 |   const char* file() const { return file_; } | 
 |   int line() const { return line_; } | 
 |   const char* source_text() const { return source_text_.c_str(); } | 
 |   // Returns the cardinality specified in the expectation spec. | 
 |   const Cardinality& cardinality() const { return cardinality_; } | 
 |  | 
 |   // Describes the source file location of this expectation. | 
 |   void DescribeLocationTo(::std::ostream* os) const { | 
 |     *os << FormatFileLocation(file(), line()) << " "; | 
 |   } | 
 |  | 
 |   // Describes how many times a function call matching this | 
 |   // expectation has occurred. | 
 |   void DescribeCallCountTo(::std::ostream* os) const | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); | 
 |  | 
 |   // If this mock method has an extra matcher (i.e. .With(matcher)), | 
 |   // describes it to the ostream. | 
 |   virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0; | 
 |  | 
 |  protected: | 
 |   friend class ::testing::Expectation; | 
 |   friend class UntypedFunctionMockerBase; | 
 |  | 
 |   enum Clause { | 
 |     // Don't change the order of the enum members! | 
 |     kNone, | 
 |     kWith, | 
 |     kTimes, | 
 |     kInSequence, | 
 |     kAfter, | 
 |     kWillOnce, | 
 |     kWillRepeatedly, | 
 |     kRetiresOnSaturation | 
 |   }; | 
 |  | 
 |   typedef std::vector<const void*> UntypedActions; | 
 |  | 
 |   // Returns an Expectation object that references and co-owns this | 
 |   // expectation. | 
 |   virtual Expectation GetHandle() = 0; | 
 |  | 
 |   // Asserts that the EXPECT_CALL() statement has the given property. | 
 |   void AssertSpecProperty(bool property, | 
 |                           const std::string& failure_message) const { | 
 |     Assert(property, file_, line_, failure_message); | 
 |   } | 
 |  | 
 |   // Expects that the EXPECT_CALL() statement has the given property. | 
 |   void ExpectSpecProperty(bool property, | 
 |                           const std::string& failure_message) const { | 
 |     Expect(property, file_, line_, failure_message); | 
 |   } | 
 |  | 
 |   // Explicitly specifies the cardinality of this expectation.  Used | 
 |   // by the subclasses to implement the .Times() clause. | 
 |   void SpecifyCardinality(const Cardinality& cardinality); | 
 |  | 
 |   // Returns true if and only if the user specified the cardinality | 
 |   // explicitly using a .Times(). | 
 |   bool cardinality_specified() const { return cardinality_specified_; } | 
 |  | 
 |   // Sets the cardinality of this expectation spec. | 
 |   void set_cardinality(const Cardinality& a_cardinality) { | 
 |     cardinality_ = a_cardinality; | 
 |   } | 
 |  | 
 |   // The following group of methods should only be called after the | 
 |   // EXPECT_CALL() statement, and only when g_gmock_mutex is held by | 
 |   // the current thread. | 
 |  | 
 |   // Retires all pre-requisites of this expectation. | 
 |   void RetireAllPreRequisites() | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); | 
 |  | 
 |   // Returns true if and only if this expectation is retired. | 
 |   bool is_retired() const | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     return retired_; | 
 |   } | 
 |  | 
 |   // Retires this expectation. | 
 |   void Retire() | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     retired_ = true; | 
 |   } | 
 |  | 
 |   // Returns true if and only if this expectation is satisfied. | 
 |   bool IsSatisfied() const | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     return cardinality().IsSatisfiedByCallCount(call_count_); | 
 |   } | 
 |  | 
 |   // Returns true if and only if this expectation is saturated. | 
 |   bool IsSaturated() const | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     return cardinality().IsSaturatedByCallCount(call_count_); | 
 |   } | 
 |  | 
 |   // Returns true if and only if this expectation is over-saturated. | 
 |   bool IsOverSaturated() const | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     return cardinality().IsOverSaturatedByCallCount(call_count_); | 
 |   } | 
 |  | 
 |   // Returns true if and only if all pre-requisites of this expectation are | 
 |   // satisfied. | 
 |   bool AllPrerequisitesAreSatisfied() const | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); | 
 |  | 
 |   // Adds unsatisfied pre-requisites of this expectation to 'result'. | 
 |   void FindUnsatisfiedPrerequisites(ExpectationSet* result) const | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); | 
 |  | 
 |   // Returns the number this expectation has been invoked. | 
 |   int call_count() const | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     return call_count_; | 
 |   } | 
 |  | 
 |   // Increments the number this expectation has been invoked. | 
 |   void IncrementCallCount() | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     call_count_++; | 
 |   } | 
 |  | 
 |   // Checks the action count (i.e. the number of WillOnce() and | 
 |   // WillRepeatedly() clauses) against the cardinality if this hasn't | 
 |   // been done before.  Prints a warning if there are too many or too | 
 |   // few actions. | 
 |   void CheckActionCountIfNotDone() const | 
 |       GTEST_LOCK_EXCLUDED_(mutex_); | 
 |  | 
 |   friend class ::testing::Sequence; | 
 |   friend class ::testing::internal::ExpectationTester; | 
 |  | 
 |   template <typename Function> | 
 |   friend class TypedExpectation; | 
 |  | 
 |   // Implements the .Times() clause. | 
 |   void UntypedTimes(const Cardinality& a_cardinality); | 
 |  | 
 |   // This group of fields are part of the spec and won't change after | 
 |   // an EXPECT_CALL() statement finishes. | 
 |   const char* file_;          // The file that contains the expectation. | 
 |   int line_;                  // The line number of the expectation. | 
 |   const std::string source_text_;  // The EXPECT_CALL(...) source text. | 
 |   // True if and only if the cardinality is specified explicitly. | 
 |   bool cardinality_specified_; | 
 |   Cardinality cardinality_;            // The cardinality of the expectation. | 
 |   // The immediate pre-requisites (i.e. expectations that must be | 
 |   // satisfied before this expectation can be matched) of this | 
 |   // expectation.  We use std::shared_ptr in the set because we want an | 
 |   // Expectation object to be co-owned by its FunctionMocker and its | 
 |   // successors.  This allows multiple mock objects to be deleted at | 
 |   // different times. | 
 |   ExpectationSet immediate_prerequisites_; | 
 |  | 
 |   // This group of fields are the current state of the expectation, | 
 |   // and can change as the mock function is called. | 
 |   int call_count_;  // How many times this expectation has been invoked. | 
 |   bool retired_;    // True if and only if this expectation has retired. | 
 |   UntypedActions untyped_actions_; | 
 |   bool extra_matcher_specified_; | 
 |   bool repeated_action_specified_;  // True if a WillRepeatedly() was specified. | 
 |   bool retires_on_saturation_; | 
 |   Clause last_clause_; | 
 |   mutable bool action_count_checked_;  // Under mutex_. | 
 |   mutable Mutex mutex_;  // Protects action_count_checked_. | 
 | };  // class ExpectationBase | 
 |  | 
 | // Impements an expectation for the given function type. | 
 | template <typename F> | 
 | class TypedExpectation : public ExpectationBase { | 
 |  public: | 
 |   typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |   typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; | 
 |   typedef typename Function<F>::Result Result; | 
 |  | 
 |   TypedExpectation(FunctionMocker<F>* owner, const char* a_file, int a_line, | 
 |                    const std::string& a_source_text, | 
 |                    const ArgumentMatcherTuple& m) | 
 |       : ExpectationBase(a_file, a_line, a_source_text), | 
 |         owner_(owner), | 
 |         matchers_(m), | 
 |         // By default, extra_matcher_ should match anything.  However, | 
 |         // we cannot initialize it with _ as that causes ambiguity between | 
 |         // Matcher's copy and move constructor for some argument types. | 
 |         extra_matcher_(A<const ArgumentTuple&>()), | 
 |         repeated_action_(DoDefault()) {} | 
 |  | 
 |   ~TypedExpectation() override { | 
 |     // Check the validity of the action count if it hasn't been done | 
 |     // yet (for example, if the expectation was never used). | 
 |     CheckActionCountIfNotDone(); | 
 |     for (UntypedActions::const_iterator it = untyped_actions_.begin(); | 
 |          it != untyped_actions_.end(); ++it) { | 
 |       delete static_cast<const Action<F>*>(*it); | 
 |     } | 
 |   } | 
 |  | 
 |   // Implements the .With() clause. | 
 |   TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) { | 
 |     if (last_clause_ == kWith) { | 
 |       ExpectSpecProperty(false, | 
 |                          ".With() cannot appear " | 
 |                          "more than once in an EXPECT_CALL()."); | 
 |     } else { | 
 |       ExpectSpecProperty(last_clause_ < kWith, | 
 |                          ".With() must be the first " | 
 |                          "clause in an EXPECT_CALL()."); | 
 |     } | 
 |     last_clause_ = kWith; | 
 |  | 
 |     extra_matcher_ = m; | 
 |     extra_matcher_specified_ = true; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Implements the .Times() clause. | 
 |   TypedExpectation& Times(const Cardinality& a_cardinality) { | 
 |     ExpectationBase::UntypedTimes(a_cardinality); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Implements the .Times() clause. | 
 |   TypedExpectation& Times(int n) { | 
 |     return Times(Exactly(n)); | 
 |   } | 
 |  | 
 |   // Implements the .InSequence() clause. | 
 |   TypedExpectation& InSequence(const Sequence& s) { | 
 |     ExpectSpecProperty(last_clause_ <= kInSequence, | 
 |                        ".InSequence() cannot appear after .After()," | 
 |                        " .WillOnce(), .WillRepeatedly(), or " | 
 |                        ".RetiresOnSaturation()."); | 
 |     last_clause_ = kInSequence; | 
 |  | 
 |     s.AddExpectation(GetHandle()); | 
 |     return *this; | 
 |   } | 
 |   TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) { | 
 |     return InSequence(s1).InSequence(s2); | 
 |   } | 
 |   TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, | 
 |                                const Sequence& s3) { | 
 |     return InSequence(s1, s2).InSequence(s3); | 
 |   } | 
 |   TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, | 
 |                                const Sequence& s3, const Sequence& s4) { | 
 |     return InSequence(s1, s2, s3).InSequence(s4); | 
 |   } | 
 |   TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, | 
 |                                const Sequence& s3, const Sequence& s4, | 
 |                                const Sequence& s5) { | 
 |     return InSequence(s1, s2, s3, s4).InSequence(s5); | 
 |   } | 
 |  | 
 |   // Implements that .After() clause. | 
 |   TypedExpectation& After(const ExpectationSet& s) { | 
 |     ExpectSpecProperty(last_clause_ <= kAfter, | 
 |                        ".After() cannot appear after .WillOnce()," | 
 |                        " .WillRepeatedly(), or " | 
 |                        ".RetiresOnSaturation()."); | 
 |     last_clause_ = kAfter; | 
 |  | 
 |     for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) { | 
 |       immediate_prerequisites_ += *it; | 
 |     } | 
 |     return *this; | 
 |   } | 
 |   TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) { | 
 |     return After(s1).After(s2); | 
 |   } | 
 |   TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, | 
 |                           const ExpectationSet& s3) { | 
 |     return After(s1, s2).After(s3); | 
 |   } | 
 |   TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, | 
 |                           const ExpectationSet& s3, const ExpectationSet& s4) { | 
 |     return After(s1, s2, s3).After(s4); | 
 |   } | 
 |   TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, | 
 |                           const ExpectationSet& s3, const ExpectationSet& s4, | 
 |                           const ExpectationSet& s5) { | 
 |     return After(s1, s2, s3, s4).After(s5); | 
 |   } | 
 |  | 
 |   // Implements the .WillOnce() clause. | 
 |   TypedExpectation& WillOnce(const Action<F>& action) { | 
 |     ExpectSpecProperty(last_clause_ <= kWillOnce, | 
 |                        ".WillOnce() cannot appear after " | 
 |                        ".WillRepeatedly() or .RetiresOnSaturation()."); | 
 |     last_clause_ = kWillOnce; | 
 |  | 
 |     untyped_actions_.push_back(new Action<F>(action)); | 
 |     if (!cardinality_specified()) { | 
 |       set_cardinality(Exactly(static_cast<int>(untyped_actions_.size()))); | 
 |     } | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Implements the .WillRepeatedly() clause. | 
 |   TypedExpectation& WillRepeatedly(const Action<F>& action) { | 
 |     if (last_clause_ == kWillRepeatedly) { | 
 |       ExpectSpecProperty(false, | 
 |                          ".WillRepeatedly() cannot appear " | 
 |                          "more than once in an EXPECT_CALL()."); | 
 |     } else { | 
 |       ExpectSpecProperty(last_clause_ < kWillRepeatedly, | 
 |                          ".WillRepeatedly() cannot appear " | 
 |                          "after .RetiresOnSaturation()."); | 
 |     } | 
 |     last_clause_ = kWillRepeatedly; | 
 |     repeated_action_specified_ = true; | 
 |  | 
 |     repeated_action_ = action; | 
 |     if (!cardinality_specified()) { | 
 |       set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size()))); | 
 |     } | 
 |  | 
 |     // Now that no more action clauses can be specified, we check | 
 |     // whether their count makes sense. | 
 |     CheckActionCountIfNotDone(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Implements the .RetiresOnSaturation() clause. | 
 |   TypedExpectation& RetiresOnSaturation() { | 
 |     ExpectSpecProperty(last_clause_ < kRetiresOnSaturation, | 
 |                        ".RetiresOnSaturation() cannot appear " | 
 |                        "more than once."); | 
 |     last_clause_ = kRetiresOnSaturation; | 
 |     retires_on_saturation_ = true; | 
 |  | 
 |     // Now that no more action clauses can be specified, we check | 
 |     // whether their count makes sense. | 
 |     CheckActionCountIfNotDone(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Returns the matchers for the arguments as specified inside the | 
 |   // EXPECT_CALL() macro. | 
 |   const ArgumentMatcherTuple& matchers() const { | 
 |     return matchers_; | 
 |   } | 
 |  | 
 |   // Returns the matcher specified by the .With() clause. | 
 |   const Matcher<const ArgumentTuple&>& extra_matcher() const { | 
 |     return extra_matcher_; | 
 |   } | 
 |  | 
 |   // Returns the action specified by the .WillRepeatedly() clause. | 
 |   const Action<F>& repeated_action() const { return repeated_action_; } | 
 |  | 
 |   // If this mock method has an extra matcher (i.e. .With(matcher)), | 
 |   // describes it to the ostream. | 
 |   void MaybeDescribeExtraMatcherTo(::std::ostream* os) override { | 
 |     if (extra_matcher_specified_) { | 
 |       *os << "    Expected args: "; | 
 |       extra_matcher_.DescribeTo(os); | 
 |       *os << "\n"; | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename Function> | 
 |   friend class FunctionMocker; | 
 |  | 
 |   // Returns an Expectation object that references and co-owns this | 
 |   // expectation. | 
 |   Expectation GetHandle() override { return owner_->GetHandleOf(this); } | 
 |  | 
 |   // The following methods will be called only after the EXPECT_CALL() | 
 |   // statement finishes and when the current thread holds | 
 |   // g_gmock_mutex. | 
 |  | 
 |   // Returns true if and only if this expectation matches the given arguments. | 
 |   bool Matches(const ArgumentTuple& args) const | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); | 
 |   } | 
 |  | 
 |   // Returns true if and only if this expectation should handle the given | 
 |   // arguments. | 
 |   bool ShouldHandleArguments(const ArgumentTuple& args) const | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |  | 
 |     // In case the action count wasn't checked when the expectation | 
 |     // was defined (e.g. if this expectation has no WillRepeatedly() | 
 |     // or RetiresOnSaturation() clause), we check it when the | 
 |     // expectation is used for the first time. | 
 |     CheckActionCountIfNotDone(); | 
 |     return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args); | 
 |   } | 
 |  | 
 |   // Describes the result of matching the arguments against this | 
 |   // expectation to the given ostream. | 
 |   void ExplainMatchResultTo( | 
 |       const ArgumentTuple& args, | 
 |       ::std::ostream* os) const | 
 |           GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |  | 
 |     if (is_retired()) { | 
 |       *os << "         Expected: the expectation is active\n" | 
 |           << "           Actual: it is retired\n"; | 
 |     } else if (!Matches(args)) { | 
 |       if (!TupleMatches(matchers_, args)) { | 
 |         ExplainMatchFailureTupleTo(matchers_, args, os); | 
 |       } | 
 |       StringMatchResultListener listener; | 
 |       if (!extra_matcher_.MatchAndExplain(args, &listener)) { | 
 |         *os << "    Expected args: "; | 
 |         extra_matcher_.DescribeTo(os); | 
 |         *os << "\n           Actual: don't match"; | 
 |  | 
 |         internal::PrintIfNotEmpty(listener.str(), os); | 
 |         *os << "\n"; | 
 |       } | 
 |     } else if (!AllPrerequisitesAreSatisfied()) { | 
 |       *os << "         Expected: all pre-requisites are satisfied\n" | 
 |           << "           Actual: the following immediate pre-requisites " | 
 |           << "are not satisfied:\n"; | 
 |       ExpectationSet unsatisfied_prereqs; | 
 |       FindUnsatisfiedPrerequisites(&unsatisfied_prereqs); | 
 |       int i = 0; | 
 |       for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin(); | 
 |            it != unsatisfied_prereqs.end(); ++it) { | 
 |         it->expectation_base()->DescribeLocationTo(os); | 
 |         *os << "pre-requisite #" << i++ << "\n"; | 
 |       } | 
 |       *os << "                   (end of pre-requisites)\n"; | 
 |     } else { | 
 |       // This line is here just for completeness' sake.  It will never | 
 |       // be executed as currently the ExplainMatchResultTo() function | 
 |       // is called only when the mock function call does NOT match the | 
 |       // expectation. | 
 |       *os << "The call matches the expectation.\n"; | 
 |     } | 
 |   } | 
 |  | 
 |   // Returns the action that should be taken for the current invocation. | 
 |   const Action<F>& GetCurrentAction(const FunctionMocker<F>* mocker, | 
 |                                     const ArgumentTuple& args) const | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     const int count = call_count(); | 
 |     Assert(count >= 1, __FILE__, __LINE__, | 
 |            "call_count() is <= 0 when GetCurrentAction() is " | 
 |            "called - this should never happen."); | 
 |  | 
 |     const int action_count = static_cast<int>(untyped_actions_.size()); | 
 |     if (action_count > 0 && !repeated_action_specified_ && | 
 |         count > action_count) { | 
 |       // If there is at least one WillOnce() and no WillRepeatedly(), | 
 |       // we warn the user when the WillOnce() clauses ran out. | 
 |       ::std::stringstream ss; | 
 |       DescribeLocationTo(&ss); | 
 |       ss << "Actions ran out in " << source_text() << "...\n" | 
 |          << "Called " << count << " times, but only " | 
 |          << action_count << " WillOnce()" | 
 |          << (action_count == 1 ? " is" : "s are") << " specified - "; | 
 |       mocker->DescribeDefaultActionTo(args, &ss); | 
 |       Log(kWarning, ss.str(), 1); | 
 |     } | 
 |  | 
 |     return count <= action_count | 
 |                ? *static_cast<const Action<F>*>( | 
 |                      untyped_actions_[static_cast<size_t>(count - 1)]) | 
 |                : repeated_action(); | 
 |   } | 
 |  | 
 |   // Given the arguments of a mock function call, if the call will | 
 |   // over-saturate this expectation, returns the default action; | 
 |   // otherwise, returns the next action in this expectation.  Also | 
 |   // describes *what* happened to 'what', and explains *why* Google | 
 |   // Mock does it to 'why'.  This method is not const as it calls | 
 |   // IncrementCallCount().  A return value of NULL means the default | 
 |   // action. | 
 |   const Action<F>* GetActionForArguments(const FunctionMocker<F>* mocker, | 
 |                                          const ArgumentTuple& args, | 
 |                                          ::std::ostream* what, | 
 |                                          ::std::ostream* why) | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     if (IsSaturated()) { | 
 |       // We have an excessive call. | 
 |       IncrementCallCount(); | 
 |       *what << "Mock function called more times than expected - "; | 
 |       mocker->DescribeDefaultActionTo(args, what); | 
 |       DescribeCallCountTo(why); | 
 |  | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     IncrementCallCount(); | 
 |     RetireAllPreRequisites(); | 
 |  | 
 |     if (retires_on_saturation_ && IsSaturated()) { | 
 |       Retire(); | 
 |     } | 
 |  | 
 |     // Must be done after IncrementCount()! | 
 |     *what << "Mock function call matches " << source_text() <<"...\n"; | 
 |     return &(GetCurrentAction(mocker, args)); | 
 |   } | 
 |  | 
 |   // All the fields below won't change once the EXPECT_CALL() | 
 |   // statement finishes. | 
 |   FunctionMocker<F>* const owner_; | 
 |   ArgumentMatcherTuple matchers_; | 
 |   Matcher<const ArgumentTuple&> extra_matcher_; | 
 |   Action<F> repeated_action_; | 
 |  | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation); | 
 | };  // class TypedExpectation | 
 |  | 
 | // A MockSpec object is used by ON_CALL() or EXPECT_CALL() for | 
 | // specifying the default behavior of, or expectation on, a mock | 
 | // function. | 
 |  | 
 | // Note: class MockSpec really belongs to the ::testing namespace. | 
 | // However if we define it in ::testing, MSVC will complain when | 
 | // classes in ::testing::internal declare it as a friend class | 
 | // template.  To workaround this compiler bug, we define MockSpec in | 
 | // ::testing::internal and import it into ::testing. | 
 |  | 
 | // Logs a message including file and line number information. | 
 | GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity, | 
 |                                 const char* file, int line, | 
 |                                 const std::string& message); | 
 |  | 
 | template <typename F> | 
 | class MockSpec { | 
 |  public: | 
 |   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |   typedef typename internal::Function<F>::ArgumentMatcherTuple | 
 |       ArgumentMatcherTuple; | 
 |  | 
 |   // Constructs a MockSpec object, given the function mocker object | 
 |   // that the spec is associated with. | 
 |   MockSpec(internal::FunctionMocker<F>* function_mocker, | 
 |            const ArgumentMatcherTuple& matchers) | 
 |       : function_mocker_(function_mocker), matchers_(matchers) {} | 
 |  | 
 |   // Adds a new default action spec to the function mocker and returns | 
 |   // the newly created spec. | 
 |   internal::OnCallSpec<F>& InternalDefaultActionSetAt( | 
 |       const char* file, int line, const char* obj, const char* call) { | 
 |     LogWithLocation(internal::kInfo, file, line, | 
 |                     std::string("ON_CALL(") + obj + ", " + call + ") invoked"); | 
 |     return function_mocker_->AddNewOnCallSpec(file, line, matchers_); | 
 |   } | 
 |  | 
 |   // Adds a new expectation spec to the function mocker and returns | 
 |   // the newly created spec. | 
 |   internal::TypedExpectation<F>& InternalExpectedAt( | 
 |       const char* file, int line, const char* obj, const char* call) { | 
 |     const std::string source_text(std::string("EXPECT_CALL(") + obj + ", " + | 
 |                                   call + ")"); | 
 |     LogWithLocation(internal::kInfo, file, line, source_text + " invoked"); | 
 |     return function_mocker_->AddNewExpectation( | 
 |         file, line, source_text, matchers_); | 
 |   } | 
 |  | 
 |   // This operator overload is used to swallow the superfluous parameter list | 
 |   // introduced by the ON/EXPECT_CALL macros. See the macro comments for more | 
 |   // explanation. | 
 |   MockSpec<F>& operator()(const internal::WithoutMatchers&, void* const) { | 
 |     return *this; | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename Function> | 
 |   friend class internal::FunctionMocker; | 
 |  | 
 |   // The function mocker that owns this spec. | 
 |   internal::FunctionMocker<F>* const function_mocker_; | 
 |   // The argument matchers specified in the spec. | 
 |   ArgumentMatcherTuple matchers_; | 
 | };  // class MockSpec | 
 |  | 
 | // Wrapper type for generically holding an ordinary value or lvalue reference. | 
 | // If T is not a reference type, it must be copyable or movable. | 
 | // ReferenceOrValueWrapper<T> is movable, and will also be copyable unless | 
 | // T is a move-only value type (which means that it will always be copyable | 
 | // if the current platform does not support move semantics). | 
 | // | 
 | // The primary template defines handling for values, but function header | 
 | // comments describe the contract for the whole template (including | 
 | // specializations). | 
 | template <typename T> | 
 | class ReferenceOrValueWrapper { | 
 |  public: | 
 |   // Constructs a wrapper from the given value/reference. | 
 |   explicit ReferenceOrValueWrapper(T value) | 
 |       : value_(std::move(value)) { | 
 |   } | 
 |  | 
 |   // Unwraps and returns the underlying value/reference, exactly as | 
 |   // originally passed. The behavior of calling this more than once on | 
 |   // the same object is unspecified. | 
 |   T Unwrap() { return std::move(value_); } | 
 |  | 
 |   // Provides nondestructive access to the underlying value/reference. | 
 |   // Always returns a const reference (more precisely, | 
 |   // const std::add_lvalue_reference<T>::type). The behavior of calling this | 
 |   // after calling Unwrap on the same object is unspecified. | 
 |   const T& Peek() const { | 
 |     return value_; | 
 |   } | 
 |  | 
 |  private: | 
 |   T value_; | 
 | }; | 
 |  | 
 | // Specialization for lvalue reference types. See primary template | 
 | // for documentation. | 
 | template <typename T> | 
 | class ReferenceOrValueWrapper<T&> { | 
 |  public: | 
 |   // Workaround for debatable pass-by-reference lint warning (c-library-team | 
 |   // policy precludes NOLINT in this context) | 
 |   typedef T& reference; | 
 |   explicit ReferenceOrValueWrapper(reference ref) | 
 |       : value_ptr_(&ref) {} | 
 |   T& Unwrap() { return *value_ptr_; } | 
 |   const T& Peek() const { return *value_ptr_; } | 
 |  | 
 |  private: | 
 |   T* value_ptr_; | 
 | }; | 
 |  | 
 | // C++ treats the void type specially.  For example, you cannot define | 
 | // a void-typed variable or pass a void value to a function. | 
 | // ActionResultHolder<T> holds a value of type T, where T must be a | 
 | // copyable type or void (T doesn't need to be default-constructable). | 
 | // It hides the syntactic difference between void and other types, and | 
 | // is used to unify the code for invoking both void-returning and | 
 | // non-void-returning mock functions. | 
 |  | 
 | // Untyped base class for ActionResultHolder<T>. | 
 | class UntypedActionResultHolderBase { | 
 |  public: | 
 |   virtual ~UntypedActionResultHolderBase() {} | 
 |  | 
 |   // Prints the held value as an action's result to os. | 
 |   virtual void PrintAsActionResult(::std::ostream* os) const = 0; | 
 | }; | 
 |  | 
 | // This generic definition is used when T is not void. | 
 | template <typename T> | 
 | class ActionResultHolder : public UntypedActionResultHolderBase { | 
 |  public: | 
 |   // Returns the held value. Must not be called more than once. | 
 |   T Unwrap() { | 
 |     return result_.Unwrap(); | 
 |   } | 
 |  | 
 |   // Prints the held value as an action's result to os. | 
 |   void PrintAsActionResult(::std::ostream* os) const override { | 
 |     *os << "\n          Returns: "; | 
 |     // T may be a reference type, so we don't use UniversalPrint(). | 
 |     UniversalPrinter<T>::Print(result_.Peek(), os); | 
 |   } | 
 |  | 
 |   // Performs the given mock function's default action and returns the | 
 |   // result in a new-ed ActionResultHolder. | 
 |   template <typename F> | 
 |   static ActionResultHolder* PerformDefaultAction( | 
 |       const FunctionMocker<F>* func_mocker, | 
 |       typename Function<F>::ArgumentTuple&& args, | 
 |       const std::string& call_description) { | 
 |     return new ActionResultHolder(Wrapper(func_mocker->PerformDefaultAction( | 
 |         std::move(args), call_description))); | 
 |   } | 
 |  | 
 |   // Performs the given action and returns the result in a new-ed | 
 |   // ActionResultHolder. | 
 |   template <typename F> | 
 |   static ActionResultHolder* PerformAction( | 
 |       const Action<F>& action, typename Function<F>::ArgumentTuple&& args) { | 
 |     return new ActionResultHolder( | 
 |         Wrapper(action.Perform(std::move(args)))); | 
 |   } | 
 |  | 
 |  private: | 
 |   typedef ReferenceOrValueWrapper<T> Wrapper; | 
 |  | 
 |   explicit ActionResultHolder(Wrapper result) | 
 |       : result_(std::move(result)) { | 
 |   } | 
 |  | 
 |   Wrapper result_; | 
 |  | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder); | 
 | }; | 
 |  | 
 | // Specialization for T = void. | 
 | template <> | 
 | class ActionResultHolder<void> : public UntypedActionResultHolderBase { | 
 |  public: | 
 |   void Unwrap() { } | 
 |  | 
 |   void PrintAsActionResult(::std::ostream* /* os */) const override {} | 
 |  | 
 |   // Performs the given mock function's default action and returns ownership | 
 |   // of an empty ActionResultHolder*. | 
 |   template <typename F> | 
 |   static ActionResultHolder* PerformDefaultAction( | 
 |       const FunctionMocker<F>* func_mocker, | 
 |       typename Function<F>::ArgumentTuple&& args, | 
 |       const std::string& call_description) { | 
 |     func_mocker->PerformDefaultAction(std::move(args), call_description); | 
 |     return new ActionResultHolder; | 
 |   } | 
 |  | 
 |   // Performs the given action and returns ownership of an empty | 
 |   // ActionResultHolder*. | 
 |   template <typename F> | 
 |   static ActionResultHolder* PerformAction( | 
 |       const Action<F>& action, typename Function<F>::ArgumentTuple&& args) { | 
 |     action.Perform(std::move(args)); | 
 |     return new ActionResultHolder; | 
 |   } | 
 |  | 
 |  private: | 
 |   ActionResultHolder() {} | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder); | 
 | }; | 
 |  | 
 | template <typename F> | 
 | class FunctionMocker; | 
 |  | 
 | template <typename R, typename... Args> | 
 | class FunctionMocker<R(Args...)> final : public UntypedFunctionMockerBase { | 
 |   using F = R(Args...); | 
 |  | 
 |  public: | 
 |   using Result = R; | 
 |   using ArgumentTuple = std::tuple<Args...>; | 
 |   using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>; | 
 |  | 
 |   FunctionMocker() {} | 
 |  | 
 |   // There is no generally useful and implementable semantics of | 
 |   // copying a mock object, so copying a mock is usually a user error. | 
 |   // Thus we disallow copying function mockers.  If the user really | 
 |   // wants to copy a mock object, they should implement their own copy | 
 |   // operation, for example: | 
 |   // | 
 |   //   class MockFoo : public Foo { | 
 |   //    public: | 
 |   //     // Defines a copy constructor explicitly. | 
 |   //     MockFoo(const MockFoo& src) {} | 
 |   //     ... | 
 |   //   }; | 
 |   FunctionMocker(const FunctionMocker&) = delete; | 
 |   FunctionMocker& operator=(const FunctionMocker&) = delete; | 
 |  | 
 |   // The destructor verifies that all expectations on this mock | 
 |   // function have been satisfied.  If not, it will report Google Test | 
 |   // non-fatal failures for the violations. | 
 |   ~FunctionMocker() override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { | 
 |     MutexLock l(&g_gmock_mutex); | 
 |     VerifyAndClearExpectationsLocked(); | 
 |     Mock::UnregisterLocked(this); | 
 |     ClearDefaultActionsLocked(); | 
 |   } | 
 |  | 
 |   // Returns the ON_CALL spec that matches this mock function with the | 
 |   // given arguments; returns NULL if no matching ON_CALL is found. | 
 |   // L = * | 
 |   const OnCallSpec<F>* FindOnCallSpec( | 
 |       const ArgumentTuple& args) const { | 
 |     for (UntypedOnCallSpecs::const_reverse_iterator it | 
 |              = untyped_on_call_specs_.rbegin(); | 
 |          it != untyped_on_call_specs_.rend(); ++it) { | 
 |       const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it); | 
 |       if (spec->Matches(args)) | 
 |         return spec; | 
 |     } | 
 |  | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // Performs the default action of this mock function on the given | 
 |   // arguments and returns the result. Asserts (or throws if | 
 |   // exceptions are enabled) with a helpful call descrption if there | 
 |   // is no valid return value. This method doesn't depend on the | 
 |   // mutable state of this object, and thus can be called concurrently | 
 |   // without locking. | 
 |   // L = * | 
 |   Result PerformDefaultAction(ArgumentTuple&& args, | 
 |                               const std::string& call_description) const { | 
 |     const OnCallSpec<F>* const spec = | 
 |         this->FindOnCallSpec(args); | 
 |     if (spec != nullptr) { | 
 |       return spec->GetAction().Perform(std::move(args)); | 
 |     } | 
 |     const std::string message = | 
 |         call_description + | 
 |         "\n    The mock function has no default action " | 
 |         "set, and its return type has no default value set."; | 
 | #if GTEST_HAS_EXCEPTIONS | 
 |     if (!DefaultValue<Result>::Exists()) { | 
 |       throw std::runtime_error(message); | 
 |     } | 
 | #else | 
 |     Assert(DefaultValue<Result>::Exists(), "", -1, message); | 
 | #endif | 
 |     return DefaultValue<Result>::Get(); | 
 |   } | 
 |  | 
 |   // Performs the default action with the given arguments and returns | 
 |   // the action's result.  The call description string will be used in | 
 |   // the error message to describe the call in the case the default | 
 |   // action fails.  The caller is responsible for deleting the result. | 
 |   // L = * | 
 |   UntypedActionResultHolderBase* UntypedPerformDefaultAction( | 
 |       void* untyped_args,  // must point to an ArgumentTuple | 
 |       const std::string& call_description) const override { | 
 |     ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args); | 
 |     return ResultHolder::PerformDefaultAction(this, std::move(*args), | 
 |                                               call_description); | 
 |   } | 
 |  | 
 |   // Performs the given action with the given arguments and returns | 
 |   // the action's result.  The caller is responsible for deleting the | 
 |   // result. | 
 |   // L = * | 
 |   UntypedActionResultHolderBase* UntypedPerformAction( | 
 |       const void* untyped_action, void* untyped_args) const override { | 
 |     // Make a copy of the action before performing it, in case the | 
 |     // action deletes the mock object (and thus deletes itself). | 
 |     const Action<F> action = *static_cast<const Action<F>*>(untyped_action); | 
 |     ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args); | 
 |     return ResultHolder::PerformAction(action, std::move(*args)); | 
 |   } | 
 |  | 
 |   // Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked(): | 
 |   // clears the ON_CALL()s set on this mock function. | 
 |   void ClearDefaultActionsLocked() override | 
 |       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |  | 
 |     // Deleting our default actions may trigger other mock objects to be | 
 |     // deleted, for example if an action contains a reference counted smart | 
 |     // pointer to that mock object, and that is the last reference. So if we | 
 |     // delete our actions within the context of the global mutex we may deadlock | 
 |     // when this method is called again. Instead, make a copy of the set of | 
 |     // actions to delete, clear our set within the mutex, and then delete the | 
 |     // actions outside of the mutex. | 
 |     UntypedOnCallSpecs specs_to_delete; | 
 |     untyped_on_call_specs_.swap(specs_to_delete); | 
 |  | 
 |     g_gmock_mutex.Unlock(); | 
 |     for (UntypedOnCallSpecs::const_iterator it = | 
 |              specs_to_delete.begin(); | 
 |          it != specs_to_delete.end(); ++it) { | 
 |       delete static_cast<const OnCallSpec<F>*>(*it); | 
 |     } | 
 |  | 
 |     // Lock the mutex again, since the caller expects it to be locked when we | 
 |     // return. | 
 |     g_gmock_mutex.Lock(); | 
 |   } | 
 |  | 
 |   // Returns the result of invoking this mock function with the given | 
 |   // arguments.  This function can be safely called from multiple | 
 |   // threads concurrently. | 
 |   Result Invoke(Args... args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { | 
 |     ArgumentTuple tuple(std::forward<Args>(args)...); | 
 |     std::unique_ptr<ResultHolder> holder(DownCast_<ResultHolder*>( | 
 |         this->UntypedInvokeWith(static_cast<void*>(&tuple)))); | 
 |     return holder->Unwrap(); | 
 |   } | 
 |  | 
 |   MockSpec<F> With(Matcher<Args>... m) { | 
 |     return MockSpec<F>(this, ::std::make_tuple(std::move(m)...)); | 
 |   } | 
 |  | 
 |  protected: | 
 |   template <typename Function> | 
 |   friend class MockSpec; | 
 |  | 
 |   typedef ActionResultHolder<Result> ResultHolder; | 
 |  | 
 |   // Adds and returns a default action spec for this mock function. | 
 |   OnCallSpec<F>& AddNewOnCallSpec( | 
 |       const char* file, int line, | 
 |       const ArgumentMatcherTuple& m) | 
 |           GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { | 
 |     Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); | 
 |     OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m); | 
 |     untyped_on_call_specs_.push_back(on_call_spec); | 
 |     return *on_call_spec; | 
 |   } | 
 |  | 
 |   // Adds and returns an expectation spec for this mock function. | 
 |   TypedExpectation<F>& AddNewExpectation(const char* file, int line, | 
 |                                          const std::string& source_text, | 
 |                                          const ArgumentMatcherTuple& m) | 
 |       GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { | 
 |     Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); | 
 |     TypedExpectation<F>* const expectation = | 
 |         new TypedExpectation<F>(this, file, line, source_text, m); | 
 |     const std::shared_ptr<ExpectationBase> untyped_expectation(expectation); | 
 |     // See the definition of untyped_expectations_ for why access to | 
 |     // it is unprotected here. | 
 |     untyped_expectations_.push_back(untyped_expectation); | 
 |  | 
 |     // Adds this expectation into the implicit sequence if there is one. | 
 |     Sequence* const implicit_sequence = g_gmock_implicit_sequence.get(); | 
 |     if (implicit_sequence != nullptr) { | 
 |       implicit_sequence->AddExpectation(Expectation(untyped_expectation)); | 
 |     } | 
 |  | 
 |     return *expectation; | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename Func> friend class TypedExpectation; | 
 |  | 
 |   // Some utilities needed for implementing UntypedInvokeWith(). | 
 |  | 
 |   // Describes what default action will be performed for the given | 
 |   // arguments. | 
 |   // L = * | 
 |   void DescribeDefaultActionTo(const ArgumentTuple& args, | 
 |                                ::std::ostream* os) const { | 
 |     const OnCallSpec<F>* const spec = FindOnCallSpec(args); | 
 |  | 
 |     if (spec == nullptr) { | 
 |       *os << (std::is_void<Result>::value ? "returning directly.\n" | 
 |                                           : "returning default value.\n"); | 
 |     } else { | 
 |       *os << "taking default action specified at:\n" | 
 |           << FormatFileLocation(spec->file(), spec->line()) << "\n"; | 
 |     } | 
 |   } | 
 |  | 
 |   // Writes a message that the call is uninteresting (i.e. neither | 
 |   // explicitly expected nor explicitly unexpected) to the given | 
 |   // ostream. | 
 |   void UntypedDescribeUninterestingCall(const void* untyped_args, | 
 |                                         ::std::ostream* os) const override | 
 |       GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { | 
 |     const ArgumentTuple& args = | 
 |         *static_cast<const ArgumentTuple*>(untyped_args); | 
 |     *os << "Uninteresting mock function call - "; | 
 |     DescribeDefaultActionTo(args, os); | 
 |     *os << "    Function call: " << Name(); | 
 |     UniversalPrint(args, os); | 
 |   } | 
 |  | 
 |   // Returns the expectation that matches the given function arguments | 
 |   // (or NULL is there's no match); when a match is found, | 
 |   // untyped_action is set to point to the action that should be | 
 |   // performed (or NULL if the action is "do default"), and | 
 |   // is_excessive is modified to indicate whether the call exceeds the | 
 |   // expected number. | 
 |   // | 
 |   // Critical section: We must find the matching expectation and the | 
 |   // corresponding action that needs to be taken in an ATOMIC | 
 |   // transaction.  Otherwise another thread may call this mock | 
 |   // method in the middle and mess up the state. | 
 |   // | 
 |   // However, performing the action has to be left out of the critical | 
 |   // section.  The reason is that we have no control on what the | 
 |   // action does (it can invoke an arbitrary user function or even a | 
 |   // mock function) and excessive locking could cause a dead lock. | 
 |   const ExpectationBase* UntypedFindMatchingExpectation( | 
 |       const void* untyped_args, const void** untyped_action, bool* is_excessive, | 
 |       ::std::ostream* what, ::std::ostream* why) override | 
 |       GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { | 
 |     const ArgumentTuple& args = | 
 |         *static_cast<const ArgumentTuple*>(untyped_args); | 
 |     MutexLock l(&g_gmock_mutex); | 
 |     TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args); | 
 |     if (exp == nullptr) {  // A match wasn't found. | 
 |       this->FormatUnexpectedCallMessageLocked(args, what, why); | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     // This line must be done before calling GetActionForArguments(), | 
 |     // which will increment the call count for *exp and thus affect | 
 |     // its saturation status. | 
 |     *is_excessive = exp->IsSaturated(); | 
 |     const Action<F>* action = exp->GetActionForArguments(this, args, what, why); | 
 |     if (action != nullptr && action->IsDoDefault()) | 
 |       action = nullptr;  // Normalize "do default" to NULL. | 
 |     *untyped_action = action; | 
 |     return exp; | 
 |   } | 
 |  | 
 |   // Prints the given function arguments to the ostream. | 
 |   void UntypedPrintArgs(const void* untyped_args, | 
 |                         ::std::ostream* os) const override { | 
 |     const ArgumentTuple& args = | 
 |         *static_cast<const ArgumentTuple*>(untyped_args); | 
 |     UniversalPrint(args, os); | 
 |   } | 
 |  | 
 |   // Returns the expectation that matches the arguments, or NULL if no | 
 |   // expectation matches them. | 
 |   TypedExpectation<F>* FindMatchingExpectationLocked( | 
 |       const ArgumentTuple& args) const | 
 |           GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     // See the definition of untyped_expectations_ for why access to | 
 |     // it is unprotected here. | 
 |     for (typename UntypedExpectations::const_reverse_iterator it = | 
 |              untyped_expectations_.rbegin(); | 
 |          it != untyped_expectations_.rend(); ++it) { | 
 |       TypedExpectation<F>* const exp = | 
 |           static_cast<TypedExpectation<F>*>(it->get()); | 
 |       if (exp->ShouldHandleArguments(args)) { | 
 |         return exp; | 
 |       } | 
 |     } | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // Returns a message that the arguments don't match any expectation. | 
 |   void FormatUnexpectedCallMessageLocked( | 
 |       const ArgumentTuple& args, | 
 |       ::std::ostream* os, | 
 |       ::std::ostream* why) const | 
 |           GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     *os << "\nUnexpected mock function call - "; | 
 |     DescribeDefaultActionTo(args, os); | 
 |     PrintTriedExpectationsLocked(args, why); | 
 |   } | 
 |  | 
 |   // Prints a list of expectations that have been tried against the | 
 |   // current mock function call. | 
 |   void PrintTriedExpectationsLocked( | 
 |       const ArgumentTuple& args, | 
 |       ::std::ostream* why) const | 
 |           GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | 
 |     g_gmock_mutex.AssertHeld(); | 
 |     const size_t count = untyped_expectations_.size(); | 
 |     *why << "Google Mock tried the following " << count << " " | 
 |          << (count == 1 ? "expectation, but it didn't match" : | 
 |              "expectations, but none matched") | 
 |          << ":\n"; | 
 |     for (size_t i = 0; i < count; i++) { | 
 |       TypedExpectation<F>* const expectation = | 
 |           static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get()); | 
 |       *why << "\n"; | 
 |       expectation->DescribeLocationTo(why); | 
 |       if (count > 1) { | 
 |         *why << "tried expectation #" << i << ": "; | 
 |       } | 
 |       *why << expectation->source_text() << "...\n"; | 
 |       expectation->ExplainMatchResultTo(args, why); | 
 |       expectation->DescribeCallCountTo(why); | 
 |     } | 
 |   } | 
 | };  // class FunctionMocker | 
 |  | 
 | // Reports an uninteresting call (whose description is in msg) in the | 
 | // manner specified by 'reaction'. | 
 | void ReportUninterestingCall(CallReaction reaction, const std::string& msg); | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename F> | 
 | class MockFunction; | 
 |  | 
 | template <typename R, typename... Args> | 
 | class MockFunction<R(Args...)> { | 
 |  public: | 
 |   MockFunction(const MockFunction&) = delete; | 
 |   MockFunction& operator=(const MockFunction&) = delete; | 
 |  | 
 |   std::function<R(Args...)> AsStdFunction() { | 
 |     return [this](Args... args) -> R { | 
 |       return this->Call(std::forward<Args>(args)...); | 
 |     }; | 
 |   } | 
 |  | 
 |   // Implementation detail: the expansion of the MOCK_METHOD macro. | 
 |   R Call(Args... args) { | 
 |     mock_.SetOwnerAndName(this, "Call"); | 
 |     return mock_.Invoke(std::forward<Args>(args)...); | 
 |   } | 
 |  | 
 |   MockSpec<R(Args...)> gmock_Call(Matcher<Args>... m) { | 
 |     mock_.RegisterOwner(this); | 
 |     return mock_.With(std::move(m)...); | 
 |   } | 
 |  | 
 |   MockSpec<R(Args...)> gmock_Call(const WithoutMatchers&, R (*)(Args...)) { | 
 |     return this->gmock_Call(::testing::A<Args>()...); | 
 |   } | 
 |  | 
 |  protected: | 
 |   MockFunction() = default; | 
 |   ~MockFunction() = default; | 
 |  | 
 |  private: | 
 |   FunctionMocker<R(Args...)> mock_; | 
 | }; | 
 |  | 
 | /* | 
 | The SignatureOf<F> struct is a meta-function returning function signature | 
 | corresponding to the provided F argument. | 
 |  | 
 | It makes use of MockFunction easier by allowing it to accept more F arguments | 
 | than just function signatures. | 
 |  | 
 | Specializations provided here cover a signature type itself and any template | 
 | that can be parameterized with a signature, including std::function and | 
 | boost::function. | 
 | */ | 
 |  | 
 | template <typename F, typename = void> | 
 | struct SignatureOf; | 
 |  | 
 | template <typename R, typename... Args> | 
 | struct SignatureOf<R(Args...)> { | 
 |   using type = R(Args...); | 
 | }; | 
 |  | 
 | template <template <typename> class C, typename F> | 
 | struct SignatureOf<C<F>, | 
 |                    typename std::enable_if<std::is_function<F>::value>::type> | 
 |     : SignatureOf<F> {}; | 
 |  | 
 | template <typename F> | 
 | using SignatureOfT = typename SignatureOf<F>::type; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // A MockFunction<F> type has one mock method whose type is | 
 | // internal::SignatureOfT<F>.  It is useful when you just want your | 
 | // test code to emit some messages and have Google Mock verify the | 
 | // right messages are sent (and perhaps at the right times).  For | 
 | // example, if you are exercising code: | 
 | // | 
 | //   Foo(1); | 
 | //   Foo(2); | 
 | //   Foo(3); | 
 | // | 
 | // and want to verify that Foo(1) and Foo(3) both invoke | 
 | // mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write: | 
 | // | 
 | // TEST(FooTest, InvokesBarCorrectly) { | 
 | //   MyMock mock; | 
 | //   MockFunction<void(string check_point_name)> check; | 
 | //   { | 
 | //     InSequence s; | 
 | // | 
 | //     EXPECT_CALL(mock, Bar("a")); | 
 | //     EXPECT_CALL(check, Call("1")); | 
 | //     EXPECT_CALL(check, Call("2")); | 
 | //     EXPECT_CALL(mock, Bar("a")); | 
 | //   } | 
 | //   Foo(1); | 
 | //   check.Call("1"); | 
 | //   Foo(2); | 
 | //   check.Call("2"); | 
 | //   Foo(3); | 
 | // } | 
 | // | 
 | // The expectation spec says that the first Bar("a") must happen | 
 | // before check point "1", the second Bar("a") must happen after check | 
 | // point "2", and nothing should happen between the two check | 
 | // points. The explicit check points make it easy to tell which | 
 | // Bar("a") is called by which call to Foo(). | 
 | // | 
 | // MockFunction<F> can also be used to exercise code that accepts | 
 | // std::function<internal::SignatureOfT<F>> callbacks. To do so, use | 
 | // AsStdFunction() method to create std::function proxy forwarding to | 
 | // original object's Call. Example: | 
 | // | 
 | // TEST(FooTest, RunsCallbackWithBarArgument) { | 
 | //   MockFunction<int(string)> callback; | 
 | //   EXPECT_CALL(callback, Call("bar")).WillOnce(Return(1)); | 
 | //   Foo(callback.AsStdFunction()); | 
 | // } | 
 | // | 
 | // The internal::SignatureOfT<F> indirection allows to use other types | 
 | // than just function signature type. This is typically useful when | 
 | // providing a mock for a predefined std::function type. Example: | 
 | // | 
 | // using FilterPredicate = std::function<bool(string)>; | 
 | // void MyFilterAlgorithm(FilterPredicate predicate); | 
 | // | 
 | // TEST(FooTest, FilterPredicateAlwaysAccepts) { | 
 | //   MockFunction<FilterPredicate> predicateMock; | 
 | //   EXPECT_CALL(predicateMock, Call(_)).WillRepeatedly(Return(true)); | 
 | //   MyFilterAlgorithm(predicateMock.AsStdFunction()); | 
 | // } | 
 | template <typename F> | 
 | class MockFunction : public internal::MockFunction<internal::SignatureOfT<F>> { | 
 |   using Base = internal::MockFunction<internal::SignatureOfT<F>>; | 
 |  | 
 |  public: | 
 |   using Base::Base; | 
 | }; | 
 |  | 
 | // The style guide prohibits "using" statements in a namespace scope | 
 | // inside a header file.  However, the MockSpec class template is | 
 | // meant to be defined in the ::testing namespace.  The following line | 
 | // is just a trick for working around a bug in MSVC 8.0, which cannot | 
 | // handle it if we define MockSpec in ::testing. | 
 | using internal::MockSpec; | 
 |  | 
 | // Const(x) is a convenient function for obtaining a const reference | 
 | // to x.  This is useful for setting expectations on an overloaded | 
 | // const mock method, e.g. | 
 | // | 
 | //   class MockFoo : public FooInterface { | 
 | //    public: | 
 | //     MOCK_METHOD0(Bar, int()); | 
 | //     MOCK_CONST_METHOD0(Bar, int&()); | 
 | //   }; | 
 | // | 
 | //   MockFoo foo; | 
 | //   // Expects a call to non-const MockFoo::Bar(). | 
 | //   EXPECT_CALL(foo, Bar()); | 
 | //   // Expects a call to const MockFoo::Bar(). | 
 | //   EXPECT_CALL(Const(foo), Bar()); | 
 | template <typename T> | 
 | inline const T& Const(const T& x) { return x; } | 
 |  | 
 | // Constructs an Expectation object that references and co-owns exp. | 
 | inline Expectation::Expectation(internal::ExpectationBase& exp)  // NOLINT | 
 |     : expectation_base_(exp.GetHandle().expectation_base()) {} | 
 |  | 
 | }  // namespace testing | 
 |  | 
 | GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 | 
 |  | 
 | // Implementation for ON_CALL and EXPECT_CALL macros. A separate macro is | 
 | // required to avoid compile errors when the name of the method used in call is | 
 | // a result of macro expansion. See CompilesWithMethodNameExpandedFromMacro | 
 | // tests in internal/gmock-spec-builders_test.cc for more details. | 
 | // | 
 | // This macro supports statements both with and without parameter matchers. If | 
 | // the parameter list is omitted, gMock will accept any parameters, which allows | 
 | // tests to be written that don't need to encode the number of method | 
 | // parameter. This technique may only be used for non-overloaded methods. | 
 | // | 
 | //   // These are the same: | 
 | //   ON_CALL(mock, NoArgsMethod()).WillByDefault(...); | 
 | //   ON_CALL(mock, NoArgsMethod).WillByDefault(...); | 
 | // | 
 | //   // As are these: | 
 | //   ON_CALL(mock, TwoArgsMethod(_, _)).WillByDefault(...); | 
 | //   ON_CALL(mock, TwoArgsMethod).WillByDefault(...); | 
 | // | 
 | //   // Can also specify args if you want, of course: | 
 | //   ON_CALL(mock, TwoArgsMethod(_, 45)).WillByDefault(...); | 
 | // | 
 | //   // Overloads work as long as you specify parameters: | 
 | //   ON_CALL(mock, OverloadedMethod(_)).WillByDefault(...); | 
 | //   ON_CALL(mock, OverloadedMethod(_, _)).WillByDefault(...); | 
 | // | 
 | //   // Oops! Which overload did you want? | 
 | //   ON_CALL(mock, OverloadedMethod).WillByDefault(...); | 
 | //     => ERROR: call to member function 'gmock_OverloadedMethod' is ambiguous | 
 | // | 
 | // How this works: The mock class uses two overloads of the gmock_Method | 
 | // expectation setter method plus an operator() overload on the MockSpec object. | 
 | // In the matcher list form, the macro expands to: | 
 | // | 
 | //   // This statement: | 
 | //   ON_CALL(mock, TwoArgsMethod(_, 45))... | 
 | // | 
 | //   // ...expands to: | 
 | //   mock.gmock_TwoArgsMethod(_, 45)(WithoutMatchers(), nullptr)... | 
 | //   |-------------v---------------||------------v-------------| | 
 | //       invokes first overload        swallowed by operator() | 
 | // | 
 | //   // ...which is essentially: | 
 | //   mock.gmock_TwoArgsMethod(_, 45)... | 
 | // | 
 | // Whereas the form without a matcher list: | 
 | // | 
 | //   // This statement: | 
 | //   ON_CALL(mock, TwoArgsMethod)... | 
 | // | 
 | //   // ...expands to: | 
 | //   mock.gmock_TwoArgsMethod(WithoutMatchers(), nullptr)... | 
 | //   |-----------------------v--------------------------| | 
 | //                 invokes second overload | 
 | // | 
 | //   // ...which is essentially: | 
 | //   mock.gmock_TwoArgsMethod(_, _)... | 
 | // | 
 | // The WithoutMatchers() argument is used to disambiguate overloads and to | 
 | // block the caller from accidentally invoking the second overload directly. The | 
 | // second argument is an internal type derived from the method signature. The | 
 | // failure to disambiguate two overloads of this method in the ON_CALL statement | 
 | // is how we block callers from setting expectations on overloaded methods. | 
 | #define GMOCK_ON_CALL_IMPL_(mock_expr, Setter, call)                    \ | 
 |   ((mock_expr).gmock_##call)(::testing::internal::GetWithoutMatchers(), \ | 
 |                              nullptr)                                   \ | 
 |       .Setter(__FILE__, __LINE__, #mock_expr, #call) | 
 |  | 
 | #define ON_CALL(obj, call) \ | 
 |   GMOCK_ON_CALL_IMPL_(obj, InternalDefaultActionSetAt, call) | 
 |  | 
 | #define EXPECT_CALL(obj, call) \ | 
 |   GMOCK_ON_CALL_IMPL_(obj, InternalExpectedAt, call) | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ | 
 |  | 
 | namespace testing { | 
 | namespace internal { | 
 | template <typename T> | 
 | using identity_t = T; | 
 |  | 
 | template <typename Pattern> | 
 | struct ThisRefAdjuster { | 
 |   template <typename T> | 
 |   using AdjustT = typename std::conditional< | 
 |       std::is_const<typename std::remove_reference<Pattern>::type>::value, | 
 |       typename std::conditional<std::is_lvalue_reference<Pattern>::value, | 
 |                                 const T&, const T&&>::type, | 
 |       typename std::conditional<std::is_lvalue_reference<Pattern>::value, T&, | 
 |                                 T&&>::type>::type; | 
 |  | 
 |   template <typename MockType> | 
 |   static AdjustT<MockType> Adjust(const MockType& mock) { | 
 |     return static_cast<AdjustT<MockType>>(const_cast<MockType&>(mock)); | 
 |   } | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // The style guide prohibits "using" statements in a namespace scope | 
 | // inside a header file.  However, the FunctionMocker class template | 
 | // is meant to be defined in the ::testing namespace.  The following | 
 | // line is just a trick for working around a bug in MSVC 8.0, which | 
 | // cannot handle it if we define FunctionMocker in ::testing. | 
 | using internal::FunctionMocker; | 
 | }  // namespace testing | 
 |  | 
 | #define MOCK_METHOD(...) \ | 
 |   GMOCK_PP_VARIADIC_CALL(GMOCK_INTERNAL_MOCK_METHOD_ARG_, __VA_ARGS__) | 
 |  | 
 | #define GMOCK_INTERNAL_MOCK_METHOD_ARG_1(...) \ | 
 |   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) | 
 |  | 
 | #define GMOCK_INTERNAL_MOCK_METHOD_ARG_2(...) \ | 
 |   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) | 
 |  | 
 | #define GMOCK_INTERNAL_MOCK_METHOD_ARG_3(_Ret, _MethodName, _Args) \ | 
 |   GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, ()) | 
 |  | 
 | #define GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, _Spec)     \ | 
 |   GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Args);                                   \ | 
 |   GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Spec);                                   \ | 
 |   GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(                                      \ | 
 |       GMOCK_PP_NARG0 _Args, GMOCK_INTERNAL_SIGNATURE(_Ret, _Args));           \ | 
 |   GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec)                                     \ | 
 |   GMOCK_INTERNAL_MOCK_METHOD_IMPL(                                            \ | 
 |       GMOCK_PP_NARG0 _Args, _MethodName, GMOCK_INTERNAL_HAS_CONST(_Spec),     \ | 
 |       GMOCK_INTERNAL_HAS_OVERRIDE(_Spec), GMOCK_INTERNAL_HAS_FINAL(_Spec),    \ | 
 |       GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Spec),                                \ | 
 |       GMOCK_INTERNAL_GET_CALLTYPE(_Spec), GMOCK_INTERNAL_GET_REF_SPEC(_Spec), \ | 
 |       (GMOCK_INTERNAL_SIGNATURE(_Ret, _Args))) | 
 |  | 
 | #define GMOCK_INTERNAL_MOCK_METHOD_ARG_5(...) \ | 
 |   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) | 
 |  | 
 | #define GMOCK_INTERNAL_MOCK_METHOD_ARG_6(...) \ | 
 |   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) | 
 |  | 
 | #define GMOCK_INTERNAL_MOCK_METHOD_ARG_7(...) \ | 
 |   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) | 
 |  | 
 | #define GMOCK_INTERNAL_WRONG_ARITY(...)                                      \ | 
 |   static_assert(                                                             \ | 
 |       false,                                                                 \ | 
 |       "MOCK_METHOD must be called with 3 or 4 arguments. _Ret, "             \ | 
 |       "_MethodName, _Args and optionally _Spec. _Args and _Spec must be "    \ | 
 |       "enclosed in parentheses. If _Ret is a type with unprotected commas, " \ | 
 |       "it must also be enclosed in parentheses.") | 
 |  | 
 | #define GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Tuple) \ | 
 |   static_assert(                                  \ | 
 |       GMOCK_PP_IS_ENCLOSED_PARENS(_Tuple),        \ | 
 |       GMOCK_PP_STRINGIZE(_Tuple) " should be enclosed in parentheses.") | 
 |  | 
 | #define GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(_N, ...)                 \ | 
 |   static_assert(                                                       \ | 
 |       std::is_function<__VA_ARGS__>::value,                            \ | 
 |       "Signature must be a function type, maybe return type contains " \ | 
 |       "unprotected comma.");                                           \ | 
 |   static_assert(                                                       \ | 
 |       ::testing::tuple_size<typename ::testing::internal::Function<    \ | 
 |               __VA_ARGS__>::ArgumentTuple>::value == _N,               \ | 
 |       "This method does not take " GMOCK_PP_STRINGIZE(                 \ | 
 |           _N) " arguments. Parenthesize all types with unprotected commas.") | 
 |  | 
 | #define GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \ | 
 |   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT, ~, _Spec) | 
 |  | 
 | #define GMOCK_INTERNAL_MOCK_METHOD_IMPL(_N, _MethodName, _Constness,           \ | 
 |                                         _Override, _Final, _NoexceptSpec,      \ | 
 |                                         _CallType, _RefSpec, _Signature)       \ | 
 |   typename ::testing::internal::Function<GMOCK_PP_REMOVE_PARENS(               \ | 
 |       _Signature)>::Result                                                     \ | 
 |   GMOCK_INTERNAL_EXPAND(_CallType)                                             \ | 
 |       _MethodName(GMOCK_PP_REPEAT(GMOCK_INTERNAL_PARAMETER, _Signature, _N))   \ | 
 |           GMOCK_PP_IF(_Constness, const, ) _RefSpec _NoexceptSpec              \ | 
 |           GMOCK_PP_IF(_Override, override, ) GMOCK_PP_IF(_Final, final, ) {    \ | 
 |     GMOCK_MOCKER_(_N, _Constness, _MethodName)                                 \ | 
 |         .SetOwnerAndName(this, #_MethodName);                                  \ | 
 |     return GMOCK_MOCKER_(_N, _Constness, _MethodName)                          \ | 
 |         .Invoke(GMOCK_PP_REPEAT(GMOCK_INTERNAL_FORWARD_ARG, _Signature, _N));  \ | 
 |   }                                                                            \ | 
 |   ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \ | 
 |       GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_PARAMETER, _Signature, _N))       \ | 
 |       GMOCK_PP_IF(_Constness, const, ) _RefSpec {                              \ | 
 |     GMOCK_MOCKER_(_N, _Constness, _MethodName).RegisterOwner(this);            \ | 
 |     return GMOCK_MOCKER_(_N, _Constness, _MethodName)                          \ | 
 |         .With(GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_ARGUMENT, , _N));         \ | 
 |   }                                                                            \ | 
 |   ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \ | 
 |       const ::testing::internal::WithoutMatchers&,                             \ | 
 |       GMOCK_PP_IF(_Constness, const, )::testing::internal::Function<           \ | 
 |           GMOCK_PP_REMOVE_PARENS(_Signature)>*) const _RefSpec _NoexceptSpec { \ | 
 |     return ::testing::internal::ThisRefAdjuster<GMOCK_PP_IF(                   \ | 
 |         _Constness, const, ) int _RefSpec>::Adjust(*this)                      \ | 
 |         .gmock_##_MethodName(GMOCK_PP_REPEAT(                                  \ | 
 |             GMOCK_INTERNAL_A_MATCHER_ARGUMENT, _Signature, _N));               \ | 
 |   }                                                                            \ | 
 |   mutable ::testing::FunctionMocker<GMOCK_PP_REMOVE_PARENS(_Signature)>        \ | 
 |       GMOCK_MOCKER_(_N, _Constness, _MethodName) | 
 |  | 
 | #define GMOCK_INTERNAL_EXPAND(...) __VA_ARGS__ | 
 |  | 
 | // Five Valid modifiers. | 
 | #define GMOCK_INTERNAL_HAS_CONST(_Tuple) \ | 
 |   GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_CONST, ~, _Tuple)) | 
 |  | 
 | #define GMOCK_INTERNAL_HAS_OVERRIDE(_Tuple) \ | 
 |   GMOCK_PP_HAS_COMMA(                       \ | 
 |       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_OVERRIDE, ~, _Tuple)) | 
 |  | 
 | #define GMOCK_INTERNAL_HAS_FINAL(_Tuple) \ | 
 |   GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_FINAL, ~, _Tuple)) | 
 |  | 
 | #define GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Tuple) \ | 
 |   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT, ~, _Tuple) | 
 |  | 
 | #define GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT(_i, _, _elem)          \ | 
 |   GMOCK_PP_IF(                                                          \ | 
 |       GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)), \ | 
 |       _elem, ) | 
 |  | 
 | #define GMOCK_INTERNAL_GET_REF_SPEC(_Tuple) \ | 
 |   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_REF_SPEC_IF_REF, ~, _Tuple) | 
 |  | 
 | #define GMOCK_INTERNAL_REF_SPEC_IF_REF(_i, _, _elem)                       \ | 
 |   GMOCK_PP_IF(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)), \ | 
 |               GMOCK_PP_CAT(GMOCK_INTERNAL_UNPACK_, _elem), ) | 
 |  | 
 | #define GMOCK_INTERNAL_GET_CALLTYPE(_Tuple) \ | 
 |   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_CALLTYPE_IMPL, ~, _Tuple) | 
 |  | 
 | #define GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT(_i, _, _elem)            \ | 
 |   static_assert(                                                          \ | 
 |       (GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem)) +    \ | 
 |        GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem)) + \ | 
 |        GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem)) +    \ | 
 |        GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)) + \ | 
 |        GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)) +      \ | 
 |        GMOCK_INTERNAL_IS_CALLTYPE(_elem)) == 1,                           \ | 
 |       GMOCK_PP_STRINGIZE(                                                 \ | 
 |           _elem) " cannot be recognized as a valid specification modifier."); | 
 |  | 
 | // Modifiers implementation. | 
 | #define GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem) \ | 
 |   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_CONST_I_, _elem) | 
 |  | 
 | #define GMOCK_INTERNAL_DETECT_CONST_I_const , | 
 |  | 
 | #define GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem) \ | 
 |   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_OVERRIDE_I_, _elem) | 
 |  | 
 | #define GMOCK_INTERNAL_DETECT_OVERRIDE_I_override , | 
 |  | 
 | #define GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem) \ | 
 |   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_FINAL_I_, _elem) | 
 |  | 
 | #define GMOCK_INTERNAL_DETECT_FINAL_I_final , | 
 |  | 
 | #define GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem) \ | 
 |   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_NOEXCEPT_I_, _elem) | 
 |  | 
 | #define GMOCK_INTERNAL_DETECT_NOEXCEPT_I_noexcept , | 
 |  | 
 | #define GMOCK_INTERNAL_DETECT_REF(_i, _, _elem) \ | 
 |   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_REF_I_, _elem) | 
 |  | 
 | #define GMOCK_INTERNAL_DETECT_REF_I_ref , | 
 |  | 
 | #define GMOCK_INTERNAL_UNPACK_ref(x) x | 
 |  | 
 | #define GMOCK_INTERNAL_GET_CALLTYPE_IMPL(_i, _, _elem)           \ | 
 |   GMOCK_PP_IF(GMOCK_INTERNAL_IS_CALLTYPE(_elem),                 \ | 
 |               GMOCK_INTERNAL_GET_VALUE_CALLTYPE, GMOCK_PP_EMPTY) \ | 
 |   (_elem) | 
 |  | 
 | // TODO(iserna): GMOCK_INTERNAL_IS_CALLTYPE and | 
 | // GMOCK_INTERNAL_GET_VALUE_CALLTYPE needed more expansions to work on windows | 
 | // maybe they can be simplified somehow. | 
 | #define GMOCK_INTERNAL_IS_CALLTYPE(_arg) \ | 
 |   GMOCK_INTERNAL_IS_CALLTYPE_I(          \ | 
 |       GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg)) | 
 | #define GMOCK_INTERNAL_IS_CALLTYPE_I(_arg) GMOCK_PP_IS_ENCLOSED_PARENS(_arg) | 
 |  | 
 | #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE(_arg) \ | 
 |   GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(          \ | 
 |       GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg)) | 
 | #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(_arg) \ | 
 |   GMOCK_PP_IDENTITY _arg | 
 |  | 
 | #define GMOCK_INTERNAL_IS_CALLTYPE_HELPER_Calltype | 
 |  | 
 | // Note: The use of `identity_t` here allows _Ret to represent return types that | 
 | // would normally need to be specified in a different way. For example, a method | 
 | // returning a function pointer must be written as | 
 | // | 
 | // fn_ptr_return_t (*method(method_args_t...))(fn_ptr_args_t...) | 
 | // | 
 | // But we only support placing the return type at the beginning. To handle this, | 
 | // we wrap all calls in identity_t, so that a declaration will be expanded to | 
 | // | 
 | // identity_t<fn_ptr_return_t (*)(fn_ptr_args_t...)> method(method_args_t...) | 
 | // | 
 | // This allows us to work around the syntactic oddities of function/method | 
 | // types. | 
 | #define GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)                                 \ | 
 |   ::testing::internal::identity_t<GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_Ret), \ | 
 |                                               GMOCK_PP_REMOVE_PARENS,         \ | 
 |                                               GMOCK_PP_IDENTITY)(_Ret)>(      \ | 
 |       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_TYPE, _, _Args)) | 
 |  | 
 | #define GMOCK_INTERNAL_GET_TYPE(_i, _, _elem)                          \ | 
 |   GMOCK_PP_COMMA_IF(_i)                                                \ | 
 |   GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_elem), GMOCK_PP_REMOVE_PARENS, \ | 
 |               GMOCK_PP_IDENTITY)                                       \ | 
 |   (_elem) | 
 |  | 
 | #define GMOCK_INTERNAL_PARAMETER(_i, _Signature, _)            \ | 
 |   GMOCK_PP_COMMA_IF(_i)                                        \ | 
 |   GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \ | 
 |   gmock_a##_i | 
 |  | 
 | #define GMOCK_INTERNAL_FORWARD_ARG(_i, _Signature, _) \ | 
 |   GMOCK_PP_COMMA_IF(_i)                               \ | 
 |   ::std::forward<GMOCK_INTERNAL_ARG_O(                \ | 
 |       _i, GMOCK_PP_REMOVE_PARENS(_Signature))>(gmock_a##_i) | 
 |  | 
 | #define GMOCK_INTERNAL_MATCHER_PARAMETER(_i, _Signature, _)        \ | 
 |   GMOCK_PP_COMMA_IF(_i)                                            \ | 
 |   GMOCK_INTERNAL_MATCHER_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \ | 
 |   gmock_a##_i | 
 |  | 
 | #define GMOCK_INTERNAL_MATCHER_ARGUMENT(_i, _1, _2) \ | 
 |   GMOCK_PP_COMMA_IF(_i)                             \ | 
 |   gmock_a##_i | 
 |  | 
 | #define GMOCK_INTERNAL_A_MATCHER_ARGUMENT(_i, _Signature, _) \ | 
 |   GMOCK_PP_COMMA_IF(_i)                                      \ | 
 |   ::testing::A<GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature))>() | 
 |  | 
 | #define GMOCK_INTERNAL_ARG_O(_i, ...) \ | 
 |   typename ::testing::internal::Function<__VA_ARGS__>::template Arg<_i>::type | 
 |  | 
 | #define GMOCK_INTERNAL_MATCHER_O(_i, ...)                          \ | 
 |   const ::testing::Matcher<typename ::testing::internal::Function< \ | 
 |       __VA_ARGS__>::template Arg<_i>::type>& | 
 |  | 
 | #define MOCK_METHOD0(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 0, __VA_ARGS__) | 
 | #define MOCK_METHOD1(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 1, __VA_ARGS__) | 
 | #define MOCK_METHOD2(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 2, __VA_ARGS__) | 
 | #define MOCK_METHOD3(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 3, __VA_ARGS__) | 
 | #define MOCK_METHOD4(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 4, __VA_ARGS__) | 
 | #define MOCK_METHOD5(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 5, __VA_ARGS__) | 
 | #define MOCK_METHOD6(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 6, __VA_ARGS__) | 
 | #define MOCK_METHOD7(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 7, __VA_ARGS__) | 
 | #define MOCK_METHOD8(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 8, __VA_ARGS__) | 
 | #define MOCK_METHOD9(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 9, __VA_ARGS__) | 
 | #define MOCK_METHOD10(m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(, , m, 10, __VA_ARGS__) | 
 |  | 
 | #define MOCK_CONST_METHOD0(m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 0, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD1(m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 1, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD2(m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 2, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD3(m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 3, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD4(m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 4, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD5(m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 5, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD6(m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 6, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD7(m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 7, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD8(m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 8, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD9(m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 9, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD10(m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 10, __VA_ARGS__) | 
 |  | 
 | #define MOCK_METHOD0_T(m, ...) MOCK_METHOD0(m, __VA_ARGS__) | 
 | #define MOCK_METHOD1_T(m, ...) MOCK_METHOD1(m, __VA_ARGS__) | 
 | #define MOCK_METHOD2_T(m, ...) MOCK_METHOD2(m, __VA_ARGS__) | 
 | #define MOCK_METHOD3_T(m, ...) MOCK_METHOD3(m, __VA_ARGS__) | 
 | #define MOCK_METHOD4_T(m, ...) MOCK_METHOD4(m, __VA_ARGS__) | 
 | #define MOCK_METHOD5_T(m, ...) MOCK_METHOD5(m, __VA_ARGS__) | 
 | #define MOCK_METHOD6_T(m, ...) MOCK_METHOD6(m, __VA_ARGS__) | 
 | #define MOCK_METHOD7_T(m, ...) MOCK_METHOD7(m, __VA_ARGS__) | 
 | #define MOCK_METHOD8_T(m, ...) MOCK_METHOD8(m, __VA_ARGS__) | 
 | #define MOCK_METHOD9_T(m, ...) MOCK_METHOD9(m, __VA_ARGS__) | 
 | #define MOCK_METHOD10_T(m, ...) MOCK_METHOD10(m, __VA_ARGS__) | 
 |  | 
 | #define MOCK_CONST_METHOD0_T(m, ...) MOCK_CONST_METHOD0(m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD1_T(m, ...) MOCK_CONST_METHOD1(m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD2_T(m, ...) MOCK_CONST_METHOD2(m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD3_T(m, ...) MOCK_CONST_METHOD3(m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD4_T(m, ...) MOCK_CONST_METHOD4(m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD5_T(m, ...) MOCK_CONST_METHOD5(m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD6_T(m, ...) MOCK_CONST_METHOD6(m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD7_T(m, ...) MOCK_CONST_METHOD7(m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD8_T(m, ...) MOCK_CONST_METHOD8(m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD9_T(m, ...) MOCK_CONST_METHOD9(m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD10_T(m, ...) MOCK_CONST_METHOD10(m, __VA_ARGS__) | 
 |  | 
 | #define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 0, __VA_ARGS__) | 
 | #define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 1, __VA_ARGS__) | 
 | #define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 2, __VA_ARGS__) | 
 | #define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 3, __VA_ARGS__) | 
 | #define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 4, __VA_ARGS__) | 
 | #define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 5, __VA_ARGS__) | 
 | #define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 6, __VA_ARGS__) | 
 | #define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 7, __VA_ARGS__) | 
 | #define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 8, __VA_ARGS__) | 
 | #define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 9, __VA_ARGS__) | 
 | #define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 10, __VA_ARGS__) | 
 |  | 
 | #define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 0, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 1, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 2, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 3, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 4, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 5, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 6, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 7, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 8, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 9, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \ | 
 |   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 10, __VA_ARGS__) | 
 |  | 
 | #define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 |  | 
 | #define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 | #define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \ | 
 |   MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__) | 
 |  | 
 | #define GMOCK_INTERNAL_MOCK_METHODN(constness, ct, Method, args_num, ...) \ | 
 |   GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(                                  \ | 
 |       args_num, ::testing::internal::identity_t<__VA_ARGS__>);            \ | 
 |   GMOCK_INTERNAL_MOCK_METHOD_IMPL(                                        \ | 
 |       args_num, Method, GMOCK_PP_NARG0(constness), 0, 0, , ct, ,          \ | 
 |       (::testing::internal::identity_t<__VA_ARGS__>)) | 
 |  | 
 | #define GMOCK_MOCKER_(arity, constness, Method) \ | 
 |   GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__) | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ | 
 | // Copyright 2007, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // This file implements some commonly used variadic actions. | 
 |  | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ | 
 |  | 
 | #include <memory> | 
 | #include <utility> | 
 |  | 
 |  | 
 | // Include any custom callback actions added by the local installation. | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ | 
 |  | 
 | // Sometimes you want to give an action explicit template parameters | 
 | // that cannot be inferred from its value parameters.  ACTION() and | 
 | // ACTION_P*() don't support that.  ACTION_TEMPLATE() remedies that | 
 | // and can be viewed as an extension to ACTION() and ACTION_P*(). | 
 | // | 
 | // The syntax: | 
 | // | 
 | //   ACTION_TEMPLATE(ActionName, | 
 | //                   HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m), | 
 | //                   AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; } | 
 | // | 
 | // defines an action template that takes m explicit template | 
 | // parameters and n value parameters.  name_i is the name of the i-th | 
 | // template parameter, and kind_i specifies whether it's a typename, | 
 | // an integral constant, or a template.  p_i is the name of the i-th | 
 | // value parameter. | 
 | // | 
 | // Example: | 
 | // | 
 | //   // DuplicateArg<k, T>(output) converts the k-th argument of the mock | 
 | //   // function to type T and copies it to *output. | 
 | //   ACTION_TEMPLATE(DuplicateArg, | 
 | //                   HAS_2_TEMPLATE_PARAMS(int, k, typename, T), | 
 | //                   AND_1_VALUE_PARAMS(output)) { | 
 | //     *output = T(::std::get<k>(args)); | 
 | //   } | 
 | //   ... | 
 | //     int n; | 
 | //     EXPECT_CALL(mock, Foo(_, _)) | 
 | //         .WillOnce(DuplicateArg<1, unsigned char>(&n)); | 
 | // | 
 | // To create an instance of an action template, write: | 
 | // | 
 | //   ActionName<t1, ..., t_m>(v1, ..., v_n) | 
 | // | 
 | // where the ts are the template arguments and the vs are the value | 
 | // arguments.  The value argument types are inferred by the compiler. | 
 | // If you want to explicitly specify the value argument types, you can | 
 | // provide additional template arguments: | 
 | // | 
 | //   ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n) | 
 | // | 
 | // where u_i is the desired type of v_i. | 
 | // | 
 | // ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the | 
 | // number of value parameters, but not on the number of template | 
 | // parameters.  Without the restriction, the meaning of the following | 
 | // is unclear: | 
 | // | 
 | //   OverloadedAction<int, bool>(x); | 
 | // | 
 | // Are we using a single-template-parameter action where 'bool' refers | 
 | // to the type of x, or are we using a two-template-parameter action | 
 | // where the compiler is asked to infer the type of x? | 
 | // | 
 | // Implementation notes: | 
 | // | 
 | // GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and | 
 | // GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for | 
 | // implementing ACTION_TEMPLATE.  The main trick we use is to create | 
 | // new macro invocations when expanding a macro.  For example, we have | 
 | // | 
 | //   #define ACTION_TEMPLATE(name, template_params, value_params) | 
 | //       ... GMOCK_INTERNAL_DECL_##template_params ... | 
 | // | 
 | // which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...) | 
 | // to expand to | 
 | // | 
 | //       ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ... | 
 | // | 
 | // Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the | 
 | // preprocessor will continue to expand it to | 
 | // | 
 | //       ... typename T ... | 
 | // | 
 | // This technique conforms to the C++ standard and is portable.  It | 
 | // allows us to implement action templates using O(N) code, where N is | 
 | // the maximum number of template/value parameters supported.  Without | 
 | // using it, we'd have to devote O(N^2) amount of code to implement all | 
 | // combinations of m and n. | 
 |  | 
 | // Declares the template parameters. | 
 | #define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0 | 
 | #define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ | 
 |     name1) kind0 name0, kind1 name1 | 
 | #define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2) kind0 name0, kind1 name1, kind2 name2 | 
 | #define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \ | 
 |     kind3 name3 | 
 | #define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \ | 
 |     kind2 name2, kind3 name3, kind4 name4 | 
 | #define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \ | 
 |     kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5 | 
 | #define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ | 
 |     name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \ | 
 |     kind5 name5, kind6 name6 | 
 | #define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ | 
 |     kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \ | 
 |     kind4 name4, kind5 name5, kind6 name6, kind7 name7 | 
 | #define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ | 
 |     kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \ | 
 |     kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \ | 
 |     kind8 name8 | 
 | #define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ | 
 |     name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ | 
 |     name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \ | 
 |     kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \ | 
 |     kind6 name6, kind7 name7, kind8 name8, kind9 name9 | 
 |  | 
 | // Lists the template parameters. | 
 | #define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0 | 
 | #define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ | 
 |     name1) name0, name1 | 
 | #define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2) name0, name1, name2 | 
 | #define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2, kind3, name3) name0, name1, name2, name3 | 
 | #define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \ | 
 |     name4 | 
 | #define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \ | 
 |     name2, name3, name4, name5 | 
 | #define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ | 
 |     name6) name0, name1, name2, name3, name4, name5, name6 | 
 | #define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ | 
 |     kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7 | 
 | #define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | 
 |     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ | 
 |     kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \ | 
 |     name6, name7, name8 | 
 | #define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ | 
 |     name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ | 
 |     name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \ | 
 |     name3, name4, name5, name6, name7, name8, name9 | 
 |  | 
 | // Declares the types of value parameters. | 
 | #define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS() | 
 | #define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type | 
 | #define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \ | 
 |     typename p0##_type, typename p1##_type | 
 | #define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \ | 
 |     typename p0##_type, typename p1##_type, typename p2##_type | 
 | #define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ | 
 |     typename p0##_type, typename p1##_type, typename p2##_type, \ | 
 |     typename p3##_type | 
 | #define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ | 
 |     typename p0##_type, typename p1##_type, typename p2##_type, \ | 
 |     typename p3##_type, typename p4##_type | 
 | #define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ | 
 |     typename p0##_type, typename p1##_type, typename p2##_type, \ | 
 |     typename p3##_type, typename p4##_type, typename p5##_type | 
 | #define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | 
 |     p6) , typename p0##_type, typename p1##_type, typename p2##_type, \ | 
 |     typename p3##_type, typename p4##_type, typename p5##_type, \ | 
 |     typename p6##_type | 
 | #define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | 
 |     p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \ | 
 |     typename p3##_type, typename p4##_type, typename p5##_type, \ | 
 |     typename p6##_type, typename p7##_type | 
 | #define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | 
 |     p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \ | 
 |     typename p3##_type, typename p4##_type, typename p5##_type, \ | 
 |     typename p6##_type, typename p7##_type, typename p8##_type | 
 | #define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | 
 |     p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \ | 
 |     typename p2##_type, typename p3##_type, typename p4##_type, \ | 
 |     typename p5##_type, typename p6##_type, typename p7##_type, \ | 
 |     typename p8##_type, typename p9##_type | 
 |  | 
 | // Initializes the value parameters. | 
 | #define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\ | 
 |     () | 
 | #define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\ | 
 |     (p0##_type gmock_p0) : p0(::std::move(gmock_p0)) | 
 | #define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\ | 
 |     (p0##_type gmock_p0, p1##_type gmock_p1) : p0(::std::move(gmock_p0)), \ | 
 |         p1(::std::move(gmock_p1)) | 
 | #define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\ | 
 |     (p0##_type gmock_p0, p1##_type gmock_p1, \ | 
 |         p2##_type gmock_p2) : p0(::std::move(gmock_p0)), \ | 
 |         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)) | 
 | #define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\ | 
 |     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | 
 |         p3##_type gmock_p3) : p0(::std::move(gmock_p0)), \ | 
 |         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | 
 |         p3(::std::move(gmock_p3)) | 
 | #define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\ | 
 |     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | 
 |         p3##_type gmock_p3, p4##_type gmock_p4) : p0(::std::move(gmock_p0)), \ | 
 |         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | 
 |         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)) | 
 | #define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\ | 
 |     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | 
 |         p3##_type gmock_p3, p4##_type gmock_p4, \ | 
 |         p5##_type gmock_p5) : p0(::std::move(gmock_p0)), \ | 
 |         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | 
 |         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ | 
 |         p5(::std::move(gmock_p5)) | 
 | #define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\ | 
 |     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | 
 |         p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ | 
 |         p6##_type gmock_p6) : p0(::std::move(gmock_p0)), \ | 
 |         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | 
 |         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ | 
 |         p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)) | 
 | #define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\ | 
 |     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | 
 |         p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ | 
 |         p6##_type gmock_p6, p7##_type gmock_p7) : p0(::std::move(gmock_p0)), \ | 
 |         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | 
 |         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ | 
 |         p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ | 
 |         p7(::std::move(gmock_p7)) | 
 | #define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7, p8)\ | 
 |     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | 
 |         p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ | 
 |         p6##_type gmock_p6, p7##_type gmock_p7, \ | 
 |         p8##_type gmock_p8) : p0(::std::move(gmock_p0)), \ | 
 |         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | 
 |         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ | 
 |         p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ | 
 |         p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)) | 
 | #define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7, p8, p9)\ | 
 |     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | 
 |         p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ | 
 |         p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ | 
 |         p9##_type gmock_p9) : p0(::std::move(gmock_p0)), \ | 
 |         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | 
 |         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ | 
 |         p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ | 
 |         p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)), \ | 
 |         p9(::std::move(gmock_p9)) | 
 |  | 
 | // Defines the copy constructor | 
 | #define GMOCK_INTERNAL_DEFN_COPY_AND_0_VALUE_PARAMS() \ | 
 |     {}  // Avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134 | 
 | #define GMOCK_INTERNAL_DEFN_COPY_AND_1_VALUE_PARAMS(...) = default; | 
 | #define GMOCK_INTERNAL_DEFN_COPY_AND_2_VALUE_PARAMS(...) = default; | 
 | #define GMOCK_INTERNAL_DEFN_COPY_AND_3_VALUE_PARAMS(...) = default; | 
 | #define GMOCK_INTERNAL_DEFN_COPY_AND_4_VALUE_PARAMS(...) = default; | 
 | #define GMOCK_INTERNAL_DEFN_COPY_AND_5_VALUE_PARAMS(...) = default; | 
 | #define GMOCK_INTERNAL_DEFN_COPY_AND_6_VALUE_PARAMS(...) = default; | 
 | #define GMOCK_INTERNAL_DEFN_COPY_AND_7_VALUE_PARAMS(...) = default; | 
 | #define GMOCK_INTERNAL_DEFN_COPY_AND_8_VALUE_PARAMS(...) = default; | 
 | #define GMOCK_INTERNAL_DEFN_COPY_AND_9_VALUE_PARAMS(...) = default; | 
 | #define GMOCK_INTERNAL_DEFN_COPY_AND_10_VALUE_PARAMS(...) = default; | 
 |  | 
 | // Declares the fields for storing the value parameters. | 
 | #define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS() | 
 | #define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0; | 
 | #define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \ | 
 |     p1##_type p1; | 
 | #define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \ | 
 |     p1##_type p1; p2##_type p2; | 
 | #define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \ | 
 |     p1##_type p1; p2##_type p2; p3##_type p3; | 
 | #define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ | 
 |     p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; | 
 | #define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ | 
 |     p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ | 
 |     p5##_type p5; | 
 | #define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | 
 |     p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ | 
 |     p5##_type p5; p6##_type p6; | 
 | #define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ | 
 |     p5##_type p5; p6##_type p6; p7##_type p7; | 
 | #define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ | 
 |     p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; | 
 | #define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ | 
 |     p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \ | 
 |     p9##_type p9; | 
 |  | 
 | // Lists the value parameters. | 
 | #define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS() | 
 | #define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0 | 
 | #define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1 | 
 | #define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2 | 
 | #define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3 | 
 | #define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \ | 
 |     p2, p3, p4 | 
 | #define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \ | 
 |     p1, p2, p3, p4, p5 | 
 | #define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | 
 |     p6) p0, p1, p2, p3, p4, p5, p6 | 
 | #define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7) p0, p1, p2, p3, p4, p5, p6, p7 | 
 | #define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8 | 
 | #define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9 | 
 |  | 
 | // Lists the value parameter types. | 
 | #define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS() | 
 | #define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type | 
 | #define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \ | 
 |     p1##_type | 
 | #define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \ | 
 |     p1##_type, p2##_type | 
 | #define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ | 
 |     p0##_type, p1##_type, p2##_type, p3##_type | 
 | #define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ | 
 |     p0##_type, p1##_type, p2##_type, p3##_type, p4##_type | 
 | #define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ | 
 |     p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type | 
 | #define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | 
 |     p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \ | 
 |     p6##_type | 
 | #define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | 
 |     p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ | 
 |     p5##_type, p6##_type, p7##_type | 
 | #define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | 
 |     p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ | 
 |     p5##_type, p6##_type, p7##_type, p8##_type | 
 | #define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | 
 |     p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ | 
 |     p5##_type, p6##_type, p7##_type, p8##_type, p9##_type | 
 |  | 
 | // Declares the value parameters. | 
 | #define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS() | 
 | #define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0 | 
 | #define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \ | 
 |     p1##_type p1 | 
 | #define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \ | 
 |     p1##_type p1, p2##_type p2 | 
 | #define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \ | 
 |     p1##_type p1, p2##_type p2, p3##_type p3 | 
 | #define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ | 
 |     p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4 | 
 | #define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ | 
 |     p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ | 
 |     p5##_type p5 | 
 | #define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | 
 |     p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ | 
 |     p5##_type p5, p6##_type p6 | 
 | #define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ | 
 |     p5##_type p5, p6##_type p6, p7##_type p7 | 
 | #define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ | 
 |     p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8 | 
 | #define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ | 
 |     p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ | 
 |     p9##_type p9 | 
 |  | 
 | // The suffix of the class template implementing the action template. | 
 | #define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS() | 
 | #define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P | 
 | #define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2 | 
 | #define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3 | 
 | #define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4 | 
 | #define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5 | 
 | #define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6 | 
 | #define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7 | 
 | #define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7) P8 | 
 | #define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7, p8) P9 | 
 | #define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | 
 |     p7, p8, p9) P10 | 
 |  | 
 | // The name of the class template implementing the action template. | 
 | #define GMOCK_ACTION_CLASS_(name, value_params)\ | 
 |     GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params) | 
 |  | 
 | #define ACTION_TEMPLATE(name, template_params, value_params)                   \ | 
 |   template <GMOCK_INTERNAL_DECL_##template_params                              \ | 
 |             GMOCK_INTERNAL_DECL_TYPE_##value_params>                           \ | 
 |   class GMOCK_ACTION_CLASS_(name, value_params) {                              \ | 
 |    public:                                                                     \ | 
 |     explicit GMOCK_ACTION_CLASS_(name, value_params)(                          \ | 
 |         GMOCK_INTERNAL_DECL_##value_params)                                    \ | 
 |         GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params),    \ | 
 |                     = default; ,                                               \ | 
 |                     : impl_(std::make_shared<gmock_Impl>(                      \ | 
 |                                 GMOCK_INTERNAL_LIST_##value_params)) { })      \ | 
 |     GMOCK_ACTION_CLASS_(name, value_params)(                                   \ | 
 |         const GMOCK_ACTION_CLASS_(name, value_params)&) noexcept               \ | 
 |         GMOCK_INTERNAL_DEFN_COPY_##value_params                                \ | 
 |     GMOCK_ACTION_CLASS_(name, value_params)(                                   \ | 
 |         GMOCK_ACTION_CLASS_(name, value_params)&&) noexcept                    \ | 
 |         GMOCK_INTERNAL_DEFN_COPY_##value_params                                \ | 
 |     template <typename F>                                                      \ | 
 |     operator ::testing::Action<F>() const {                                    \ | 
 |       return GMOCK_PP_IF(                                                      \ | 
 |           GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params),              \ | 
 |                       (::testing::internal::MakeAction<F, gmock_Impl>()),      \ | 
 |                       (::testing::internal::MakeAction<F>(impl_)));            \ | 
 |     }                                                                          \ | 
 |    private:                                                                    \ | 
 |     class gmock_Impl {                                                         \ | 
 |      public:                                                                   \ | 
 |       explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {}                \ | 
 |       template <typename function_type, typename return_type,                  \ | 
 |                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>         \ | 
 |       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const;  \ | 
 |       GMOCK_INTERNAL_DEFN_##value_params                                       \ | 
 |     };                                                                         \ | 
 |     GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params),        \ | 
 |                 , std::shared_ptr<const gmock_Impl> impl_;)                    \ | 
 |   };                                                                           \ | 
 |   template <GMOCK_INTERNAL_DECL_##template_params                              \ | 
 |             GMOCK_INTERNAL_DECL_TYPE_##value_params>                           \ | 
 |   GMOCK_ACTION_CLASS_(name, value_params)<                                     \ | 
 |       GMOCK_INTERNAL_LIST_##template_params                                    \ | 
 |       GMOCK_INTERNAL_LIST_TYPE_##value_params> name(                           \ | 
 |           GMOCK_INTERNAL_DECL_##value_params) GTEST_MUST_USE_RESULT_;          \ | 
 |   template <GMOCK_INTERNAL_DECL_##template_params                              \ | 
 |             GMOCK_INTERNAL_DECL_TYPE_##value_params>                           \ | 
 |   inline GMOCK_ACTION_CLASS_(name, value_params)<                              \ | 
 |       GMOCK_INTERNAL_LIST_##template_params                                    \ | 
 |       GMOCK_INTERNAL_LIST_TYPE_##value_params> name(                           \ | 
 |           GMOCK_INTERNAL_DECL_##value_params) {                                \ | 
 |     return GMOCK_ACTION_CLASS_(name, value_params)<                            \ | 
 |         GMOCK_INTERNAL_LIST_##template_params                                  \ | 
 |         GMOCK_INTERNAL_LIST_TYPE_##value_params>(                              \ | 
 |             GMOCK_INTERNAL_LIST_##value_params);                               \ | 
 |   }                                                                            \ | 
 |   template <GMOCK_INTERNAL_DECL_##template_params                              \ | 
 |             GMOCK_INTERNAL_DECL_TYPE_##value_params>                           \ | 
 |   template <typename function_type, typename return_type, typename args_type,  \ | 
 |             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                 \ | 
 |   return_type GMOCK_ACTION_CLASS_(name, value_params)<                         \ | 
 |       GMOCK_INTERNAL_LIST_##template_params                                    \ | 
 |       GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::gmock_PerformImpl( \ | 
 |           GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const | 
 |  | 
 | namespace testing { | 
 |  | 
 | // The ACTION*() macros trigger warning C4100 (unreferenced formal | 
 | // parameter) in MSVC with -W4.  Unfortunately they cannot be fixed in | 
 | // the macro definition, as the warnings are generated when the macro | 
 | // is expanded and macro expansion cannot contain #pragma.  Therefore | 
 | // we suppress them here. | 
 | #ifdef _MSC_VER | 
 | # pragma warning(push) | 
 | # pragma warning(disable:4100) | 
 | #endif | 
 |  | 
 | namespace internal { | 
 |  | 
 | // internal::InvokeArgument - a helper for InvokeArgument action. | 
 | // The basic overloads are provided here for generic functors. | 
 | // Overloads for other custom-callables are provided in the | 
 | // internal/custom/gmock-generated-actions.h header. | 
 | template <typename F, typename... Args> | 
 | auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) { | 
 |   return f(args...); | 
 | } | 
 |  | 
 | template <std::size_t index, typename... Params> | 
 | struct InvokeArgumentAction { | 
 |   template <typename... Args> | 
 |   auto operator()(Args&&... args) const -> decltype(internal::InvokeArgument( | 
 |       std::get<index>(std::forward_as_tuple(std::forward<Args>(args)...)), | 
 |       std::declval<const Params&>()...)) { | 
 |     internal::FlatTuple<Args&&...> args_tuple(FlatTupleConstructTag{}, | 
 |                                               std::forward<Args>(args)...); | 
 |     return params.Apply([&](const Params&... unpacked_params) { | 
 |       auto&& callable = args_tuple.template Get<index>(); | 
 |       return internal::InvokeArgument( | 
 |           std::forward<decltype(callable)>(callable), unpacked_params...); | 
 |     }); | 
 |   } | 
 |  | 
 |   internal::FlatTuple<Params...> params; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th | 
 | // (0-based) argument, which must be a k-ary callable, of the mock | 
 | // function, with arguments a1, a2, ..., a_k. | 
 | // | 
 | // Notes: | 
 | // | 
 | //   1. The arguments are passed by value by default.  If you need to | 
 | //   pass an argument by reference, wrap it inside std::ref().  For | 
 | //   example, | 
 | // | 
 | //     InvokeArgument<1>(5, string("Hello"), std::ref(foo)) | 
 | // | 
 | //   passes 5 and string("Hello") by value, and passes foo by | 
 | //   reference. | 
 | // | 
 | //   2. If the callable takes an argument by reference but std::ref() is | 
 | //   not used, it will receive the reference to a copy of the value, | 
 | //   instead of the original value.  For example, when the 0-th | 
 | //   argument of the mock function takes a const string&, the action | 
 | // | 
 | //     InvokeArgument<0>(string("Hello")) | 
 | // | 
 | //   makes a copy of the temporary string("Hello") object and passes a | 
 | //   reference of the copy, instead of the original temporary object, | 
 | //   to the callable.  This makes it easy for a user to define an | 
 | //   InvokeArgument action from temporary values and have it performed | 
 | //   later. | 
 | template <std::size_t index, typename... Params> | 
 | internal::InvokeArgumentAction<index, typename std::decay<Params>::type...> | 
 | InvokeArgument(Params&&... params) { | 
 |   return {internal::FlatTuple<typename std::decay<Params>::type...>( | 
 |       internal::FlatTupleConstructTag{}, std::forward<Params>(params)...)}; | 
 | } | 
 |  | 
 | #ifdef _MSC_VER | 
 | # pragma warning(pop) | 
 | #endif | 
 |  | 
 | }  // namespace testing | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ | 
 | // Copyright 2013, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // This file implements some matchers that depend on gmock-matchers.h. | 
 | // | 
 | // Note that tests are implemented in gmock-matchers_test.cc rather than | 
 | // gmock-more-matchers-test.cc. | 
 |  | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ | 
 |  | 
 |  | 
 | namespace testing { | 
 |  | 
 | // Silence C4100 (unreferenced formal | 
 | // parameter) for MSVC | 
 | #ifdef _MSC_VER | 
 | # pragma warning(push) | 
 | # pragma warning(disable:4100) | 
 | #if (_MSC_VER == 1900) | 
 | // and silence C4800 (C4800: 'int *const ': forcing value | 
 | // to bool 'true' or 'false') for MSVC 14 | 
 | # pragma warning(disable:4800) | 
 |   #endif | 
 | #endif | 
 |  | 
 | // Defines a matcher that matches an empty container. The container must | 
 | // support both size() and empty(), which all STL-like containers provide. | 
 | MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") { | 
 |   if (arg.empty()) { | 
 |     return true; | 
 |   } | 
 |   *result_listener << "whose size is " << arg.size(); | 
 |   return false; | 
 | } | 
 |  | 
 | // Define a matcher that matches a value that evaluates in boolean | 
 | // context to true.  Useful for types that define "explicit operator | 
 | // bool" operators and so can't be compared for equality with true | 
 | // and false. | 
 | MATCHER(IsTrue, negation ? "is false" : "is true") { | 
 |   return static_cast<bool>(arg); | 
 | } | 
 |  | 
 | // Define a matcher that matches a value that evaluates in boolean | 
 | // context to false.  Useful for types that define "explicit operator | 
 | // bool" operators and so can't be compared for equality with true | 
 | // and false. | 
 | MATCHER(IsFalse, negation ? "is true" : "is false") { | 
 |   return !static_cast<bool>(arg); | 
 | } | 
 |  | 
 | #ifdef _MSC_VER | 
 | # pragma warning(pop) | 
 | #endif | 
 |  | 
 |  | 
 | }  // namespace testing | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ | 
 | // Copyright 2008, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 |  | 
 | // Implements class templates NiceMock, NaggyMock, and StrictMock. | 
 | // | 
 | // Given a mock class MockFoo that is created using Google Mock, | 
 | // NiceMock<MockFoo> is a subclass of MockFoo that allows | 
 | // uninteresting calls (i.e. calls to mock methods that have no | 
 | // EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo | 
 | // that prints a warning when an uninteresting call occurs, and | 
 | // StrictMock<MockFoo> is a subclass of MockFoo that treats all | 
 | // uninteresting calls as errors. | 
 | // | 
 | // Currently a mock is naggy by default, so MockFoo and | 
 | // NaggyMock<MockFoo> behave like the same.  However, we will soon | 
 | // switch the default behavior of mocks to be nice, as that in general | 
 | // leads to more maintainable tests.  When that happens, MockFoo will | 
 | // stop behaving like NaggyMock<MockFoo> and start behaving like | 
 | // NiceMock<MockFoo>. | 
 | // | 
 | // NiceMock, NaggyMock, and StrictMock "inherit" the constructors of | 
 | // their respective base class.  Therefore you can write | 
 | // NiceMock<MockFoo>(5, "a") to construct a nice mock where MockFoo | 
 | // has a constructor that accepts (int, const char*), for example. | 
 | // | 
 | // A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>, | 
 | // and StrictMock<MockFoo> only works for mock methods defined using | 
 | // the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class. | 
 | // If a mock method is defined in a base class of MockFoo, the "nice" | 
 | // or "strict" modifier may not affect it, depending on the compiler. | 
 | // In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT | 
 | // supported. | 
 |  | 
 | // GOOGLETEST_CM0002 DO NOT DELETE | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ | 
 |  | 
 | #include <type_traits> | 
 |  | 
 |  | 
 | namespace testing { | 
 | template <class MockClass> | 
 | class NiceMock; | 
 | template <class MockClass> | 
 | class NaggyMock; | 
 | template <class MockClass> | 
 | class StrictMock; | 
 |  | 
 | namespace internal { | 
 | template <typename T> | 
 | std::true_type StrictnessModifierProbe(const NiceMock<T>&); | 
 | template <typename T> | 
 | std::true_type StrictnessModifierProbe(const NaggyMock<T>&); | 
 | template <typename T> | 
 | std::true_type StrictnessModifierProbe(const StrictMock<T>&); | 
 | std::false_type StrictnessModifierProbe(...); | 
 |  | 
 | template <typename T> | 
 | constexpr bool HasStrictnessModifier() { | 
 |   return decltype(StrictnessModifierProbe(std::declval<const T&>()))::value; | 
 | } | 
 |  | 
 | // Base classes that register and deregister with testing::Mock to alter the | 
 | // default behavior around uninteresting calls. Inheriting from one of these | 
 | // classes first and then MockClass ensures the MockClass constructor is run | 
 | // after registration, and that the MockClass destructor runs before | 
 | // deregistration. This guarantees that MockClass's constructor and destructor | 
 | // run with the same level of strictness as its instance methods. | 
 |  | 
 | #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW && \ | 
 |     (defined(_MSC_VER) || defined(__clang__)) | 
 | // We need to mark these classes with this declspec to ensure that | 
 | // the empty base class optimization is performed. | 
 | #define GTEST_INTERNAL_EMPTY_BASE_CLASS __declspec(empty_bases) | 
 | #else | 
 | #define GTEST_INTERNAL_EMPTY_BASE_CLASS | 
 | #endif | 
 |  | 
 | template <typename Base> | 
 | class NiceMockImpl { | 
 |  public: | 
 |   NiceMockImpl() { ::testing::Mock::AllowUninterestingCalls(this); } | 
 |  | 
 |   ~NiceMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } | 
 | }; | 
 |  | 
 | template <typename Base> | 
 | class NaggyMockImpl { | 
 |  public: | 
 |   NaggyMockImpl() { ::testing::Mock::WarnUninterestingCalls(this); } | 
 |  | 
 |   ~NaggyMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } | 
 | }; | 
 |  | 
 | template <typename Base> | 
 | class StrictMockImpl { | 
 |  public: | 
 |   StrictMockImpl() { ::testing::Mock::FailUninterestingCalls(this); } | 
 |  | 
 |   ~StrictMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | template <class MockClass> | 
 | class GTEST_INTERNAL_EMPTY_BASE_CLASS NiceMock | 
 |     : private internal::NiceMockImpl<MockClass>, | 
 |       public MockClass { | 
 |  public: | 
 |   static_assert(!internal::HasStrictnessModifier<MockClass>(), | 
 |                 "Can't apply NiceMock to a class hierarchy that already has a " | 
 |                 "strictness modifier. See " | 
 |                 "https://google.github.io/googletest/" | 
 |                 "gmock_cook_book.html#NiceStrictNaggy"); | 
 |   NiceMock() : MockClass() { | 
 |     static_assert(sizeof(*this) == sizeof(MockClass), | 
 |                   "The impl subclass shouldn't introduce any padding"); | 
 |   } | 
 |  | 
 |   // Ideally, we would inherit base class's constructors through a using | 
 |   // declaration, which would preserve their visibility. However, many existing | 
 |   // tests rely on the fact that current implementation reexports protected | 
 |   // constructors as public. These tests would need to be cleaned up first. | 
 |  | 
 |   // Single argument constructor is special-cased so that it can be | 
 |   // made explicit. | 
 |   template <typename A> | 
 |   explicit NiceMock(A&& arg) : MockClass(std::forward<A>(arg)) { | 
 |     static_assert(sizeof(*this) == sizeof(MockClass), | 
 |                   "The impl subclass shouldn't introduce any padding"); | 
 |   } | 
 |  | 
 |   template <typename TArg1, typename TArg2, typename... An> | 
 |   NiceMock(TArg1&& arg1, TArg2&& arg2, An&&... args) | 
 |       : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), | 
 |                   std::forward<An>(args)...) { | 
 |     static_assert(sizeof(*this) == sizeof(MockClass), | 
 |                   "The impl subclass shouldn't introduce any padding"); | 
 |   } | 
 |  | 
 |  private: | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock); | 
 | }; | 
 |  | 
 | template <class MockClass> | 
 | class GTEST_INTERNAL_EMPTY_BASE_CLASS NaggyMock | 
 |     : private internal::NaggyMockImpl<MockClass>, | 
 |       public MockClass { | 
 |   static_assert(!internal::HasStrictnessModifier<MockClass>(), | 
 |                 "Can't apply NaggyMock to a class hierarchy that already has a " | 
 |                 "strictness modifier. See " | 
 |                 "https://google.github.io/googletest/" | 
 |                 "gmock_cook_book.html#NiceStrictNaggy"); | 
 |  | 
 |  public: | 
 |   NaggyMock() : MockClass() { | 
 |     static_assert(sizeof(*this) == sizeof(MockClass), | 
 |                   "The impl subclass shouldn't introduce any padding"); | 
 |   } | 
 |  | 
 |   // Ideally, we would inherit base class's constructors through a using | 
 |   // declaration, which would preserve their visibility. However, many existing | 
 |   // tests rely on the fact that current implementation reexports protected | 
 |   // constructors as public. These tests would need to be cleaned up first. | 
 |  | 
 |   // Single argument constructor is special-cased so that it can be | 
 |   // made explicit. | 
 |   template <typename A> | 
 |   explicit NaggyMock(A&& arg) : MockClass(std::forward<A>(arg)) { | 
 |     static_assert(sizeof(*this) == sizeof(MockClass), | 
 |                   "The impl subclass shouldn't introduce any padding"); | 
 |   } | 
 |  | 
 |   template <typename TArg1, typename TArg2, typename... An> | 
 |   NaggyMock(TArg1&& arg1, TArg2&& arg2, An&&... args) | 
 |       : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), | 
 |                   std::forward<An>(args)...) { | 
 |     static_assert(sizeof(*this) == sizeof(MockClass), | 
 |                   "The impl subclass shouldn't introduce any padding"); | 
 |   } | 
 |  | 
 |  private: | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock); | 
 | }; | 
 |  | 
 | template <class MockClass> | 
 | class GTEST_INTERNAL_EMPTY_BASE_CLASS StrictMock | 
 |     : private internal::StrictMockImpl<MockClass>, | 
 |       public MockClass { | 
 |  public: | 
 |   static_assert( | 
 |       !internal::HasStrictnessModifier<MockClass>(), | 
 |       "Can't apply StrictMock to a class hierarchy that already has a " | 
 |       "strictness modifier. See " | 
 |       "https://google.github.io/googletest/" | 
 |       "gmock_cook_book.html#NiceStrictNaggy"); | 
 |   StrictMock() : MockClass() { | 
 |     static_assert(sizeof(*this) == sizeof(MockClass), | 
 |                   "The impl subclass shouldn't introduce any padding"); | 
 |   } | 
 |  | 
 |   // Ideally, we would inherit base class's constructors through a using | 
 |   // declaration, which would preserve their visibility. However, many existing | 
 |   // tests rely on the fact that current implementation reexports protected | 
 |   // constructors as public. These tests would need to be cleaned up first. | 
 |  | 
 |   // Single argument constructor is special-cased so that it can be | 
 |   // made explicit. | 
 |   template <typename A> | 
 |   explicit StrictMock(A&& arg) : MockClass(std::forward<A>(arg)) { | 
 |     static_assert(sizeof(*this) == sizeof(MockClass), | 
 |                   "The impl subclass shouldn't introduce any padding"); | 
 |   } | 
 |  | 
 |   template <typename TArg1, typename TArg2, typename... An> | 
 |   StrictMock(TArg1&& arg1, TArg2&& arg2, An&&... args) | 
 |       : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), | 
 |                   std::forward<An>(args)...) { | 
 |     static_assert(sizeof(*this) == sizeof(MockClass), | 
 |                   "The impl subclass shouldn't introduce any padding"); | 
 |   } | 
 |  | 
 |  private: | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock); | 
 | }; | 
 |  | 
 | #undef GTEST_INTERNAL_EMPTY_BASE_CLASS | 
 |  | 
 | }  // namespace testing | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ | 
 |  | 
 | namespace testing { | 
 |  | 
 | // Declares Google Mock flags that we want a user to use programmatically. | 
 | GMOCK_DECLARE_bool_(catch_leaked_mocks); | 
 | GMOCK_DECLARE_string_(verbose); | 
 | GMOCK_DECLARE_int32_(default_mock_behavior); | 
 |  | 
 | // Initializes Google Mock.  This must be called before running the | 
 | // tests.  In particular, it parses the command line for the flags | 
 | // that Google Mock recognizes.  Whenever a Google Mock flag is seen, | 
 | // it is removed from argv, and *argc is decremented. | 
 | // | 
 | // No value is returned.  Instead, the Google Mock flag variables are | 
 | // updated. | 
 | // | 
 | // Since Google Test is needed for Google Mock to work, this function | 
 | // also initializes Google Test and parses its flags, if that hasn't | 
 | // been done. | 
 | GTEST_API_ void InitGoogleMock(int* argc, char** argv); | 
 |  | 
 | // This overloaded version can be used in Windows programs compiled in | 
 | // UNICODE mode. | 
 | GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv); | 
 |  | 
 | // This overloaded version can be used on Arduino/embedded platforms where | 
 | // there is no argc/argv. | 
 | GTEST_API_ void InitGoogleMock(); | 
 |  | 
 | }  // namespace testing | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ |