|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2017 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/dynamic_sparse_normal_cholesky_solver.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cstring> | 
|  | #include <ctime> | 
|  | #include <sstream> | 
|  |  | 
|  | #include "Eigen/SparseCore" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/cxsparse.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/suitesparse.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "ceres/types.h" | 
|  | #include "ceres/wall_time.h" | 
|  |  | 
|  | #ifdef CERES_USE_EIGEN_SPARSE | 
|  | #include "Eigen/SparseCholesky" | 
|  | #endif | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | DynamicSparseNormalCholeskySolver::DynamicSparseNormalCholeskySolver( | 
|  | const LinearSolver::Options& options) | 
|  | : options_(options) {} | 
|  |  | 
|  | LinearSolver::Summary DynamicSparseNormalCholeskySolver::SolveImpl( | 
|  | CompressedRowSparseMatrix* A, | 
|  | const double* b, | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double* x) { | 
|  | const int num_cols = A->num_cols(); | 
|  | VectorRef(x, num_cols).setZero(); | 
|  | A->LeftMultiply(b, x); | 
|  |  | 
|  | if (per_solve_options.D != NULL) { | 
|  | // Temporarily append a diagonal block to the A matrix, but undo | 
|  | // it before returning the matrix to the user. | 
|  | scoped_ptr<CompressedRowSparseMatrix> regularizer; | 
|  | if (!A->col_blocks().empty()) { | 
|  | regularizer.reset(CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( | 
|  | per_solve_options.D, A->col_blocks())); | 
|  | } else { | 
|  | regularizer.reset( | 
|  | new CompressedRowSparseMatrix(per_solve_options.D, num_cols)); | 
|  | } | 
|  | A->AppendRows(*regularizer); | 
|  | } | 
|  |  | 
|  | LinearSolver::Summary summary; | 
|  | switch (options_.sparse_linear_algebra_library_type) { | 
|  | case SUITE_SPARSE: | 
|  | summary = SolveImplUsingSuiteSparse(A, x); | 
|  | break; | 
|  | case CX_SPARSE: | 
|  | summary = SolveImplUsingCXSparse(A, x); | 
|  | break; | 
|  | case EIGEN_SPARSE: | 
|  | summary = SolveImplUsingEigen(A, x); | 
|  | break; | 
|  | default: | 
|  | LOG(FATAL) << "Unknown sparse linear algebra library : " | 
|  | << options_.sparse_linear_algebra_library_type; | 
|  | } | 
|  |  | 
|  | if (per_solve_options.D != NULL) { | 
|  | A->DeleteRows(num_cols); | 
|  | } | 
|  |  | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | LinearSolver::Summary DynamicSparseNormalCholeskySolver::SolveImplUsingEigen( | 
|  | CompressedRowSparseMatrix* A, double* rhs_and_solution) { | 
|  | #ifndef CERES_USE_EIGEN_SPARSE | 
|  |  | 
|  | LinearSolver::Summary summary; | 
|  | summary.num_iterations = 0; | 
|  | summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
|  | summary.message = | 
|  | "SPARSE_NORMAL_CHOLESKY cannot be used with EIGEN_SPARSE " | 
|  | "because Ceres was not built with support for " | 
|  | "Eigen's SimplicialLDLT decomposition. " | 
|  | "This requires enabling building with -DEIGENSPARSE=ON."; | 
|  | return summary; | 
|  |  | 
|  | #else | 
|  |  | 
|  | EventLogger event_logger("DynamicSparseNormalCholeskySolver::Eigen::Solve"); | 
|  |  | 
|  | Eigen::MappedSparseMatrix<double, Eigen::RowMajor> a(A->num_rows(), | 
|  | A->num_cols(), | 
|  | A->num_nonzeros(), | 
|  | A->mutable_rows(), | 
|  | A->mutable_cols(), | 
|  | A->mutable_values()); | 
|  |  | 
|  | Eigen::SparseMatrix<double> lhs = a.transpose() * a; | 
|  | Eigen::SimplicialLDLT<Eigen::SparseMatrix<double> > solver; | 
|  |  | 
|  | LinearSolver::Summary summary; | 
|  | summary.num_iterations = 1; | 
|  | summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
|  | summary.message = "Success."; | 
|  |  | 
|  | solver.analyzePattern(lhs); | 
|  | if (VLOG_IS_ON(2)) { | 
|  | std::stringstream ss; | 
|  | solver.dumpMemory(ss); | 
|  | VLOG(2) << "Symbolic Analysis\n" << ss.str(); | 
|  | } | 
|  |  | 
|  | event_logger.AddEvent("Analyze"); | 
|  | if (solver.info() != Eigen::Success) { | 
|  | summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
|  | summary.message = "Eigen failure. Unable to find symbolic factorization."; | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | solver.factorize(lhs); | 
|  | event_logger.AddEvent("Factorize"); | 
|  | if (solver.info() != Eigen::Success) { | 
|  | summary.termination_type = LINEAR_SOLVER_FAILURE; | 
|  | summary.message = "Eigen failure. Unable to find numeric factorization."; | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | const Vector rhs = VectorRef(rhs_and_solution, lhs.cols()); | 
|  | VectorRef(rhs_and_solution, lhs.cols()) = solver.solve(rhs); | 
|  | event_logger.AddEvent("Solve"); | 
|  | if (solver.info() != Eigen::Success) { | 
|  | summary.termination_type = LINEAR_SOLVER_FAILURE; | 
|  | summary.message = "Eigen failure. Unable to do triangular solve."; | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | return summary; | 
|  | #endif  // CERES_USE_EIGEN_SPARSE | 
|  | } | 
|  |  | 
|  | LinearSolver::Summary DynamicSparseNormalCholeskySolver::SolveImplUsingCXSparse( | 
|  | CompressedRowSparseMatrix* A, double* rhs_and_solution) { | 
|  | #ifdef CERES_NO_CXSPARSE | 
|  |  | 
|  | LinearSolver::Summary summary; | 
|  | summary.num_iterations = 0; | 
|  | summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
|  | summary.message = | 
|  | "SPARSE_NORMAL_CHOLESKY cannot be used with CX_SPARSE " | 
|  | "because Ceres was not built with support for CXSparse. " | 
|  | "This requires enabling building with -DCXSPARSE=ON."; | 
|  |  | 
|  | return summary; | 
|  |  | 
|  | #else | 
|  | EventLogger event_logger( | 
|  | "DynamicSparseNormalCholeskySolver::CXSparse::Solve"); | 
|  |  | 
|  | LinearSolver::Summary summary; | 
|  | summary.num_iterations = 1; | 
|  | summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
|  | summary.message = "Success."; | 
|  |  | 
|  | CXSparse cxsparse; | 
|  |  | 
|  | // Wrap the augmented Jacobian in a compressed sparse column matrix. | 
|  | cs_di a_transpose = cxsparse.CreateSparseMatrixTransposeView(A); | 
|  |  | 
|  | // Compute the normal equations. J'J delta = J'f and solve them | 
|  | // using a sparse Cholesky factorization. Notice that when compared | 
|  | // to SuiteSparse we have to explicitly compute the transpose of Jt, | 
|  | // and then the normal equations before they can be | 
|  | // factorized. CHOLMOD/SuiteSparse on the other hand can just work | 
|  | // off of Jt to compute the Cholesky factorization of the normal | 
|  | // equations. | 
|  | cs_di* a = cxsparse.TransposeMatrix(&a_transpose); | 
|  | cs_di* lhs = cxsparse.MatrixMatrixMultiply(&a_transpose, a); | 
|  | cxsparse.Free(a); | 
|  | event_logger.AddEvent("NormalEquations"); | 
|  |  | 
|  | cs_dis* factor = cxsparse.AnalyzeCholesky(lhs); | 
|  | event_logger.AddEvent("Analysis"); | 
|  |  | 
|  | if (factor == NULL) { | 
|  | summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
|  | summary.message = "CXSparse::AnalyzeCholesky failed."; | 
|  | } else if (!cxsparse.SolveCholesky(lhs, factor, rhs_and_solution)) { | 
|  | summary.termination_type = LINEAR_SOLVER_FAILURE; | 
|  | summary.message = "CXSparse::SolveCholesky failed."; | 
|  | } | 
|  | event_logger.AddEvent("Solve"); | 
|  |  | 
|  | cxsparse.Free(lhs); | 
|  | cxsparse.Free(factor); | 
|  | event_logger.AddEvent("TearDown"); | 
|  | return summary; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | LinearSolver::Summary | 
|  | DynamicSparseNormalCholeskySolver::SolveImplUsingSuiteSparse( | 
|  | CompressedRowSparseMatrix* A, double* rhs_and_solution) { | 
|  | #ifdef CERES_NO_SUITESPARSE | 
|  |  | 
|  | LinearSolver::Summary summary; | 
|  | summary.num_iterations = 0; | 
|  | summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
|  | summary.message = | 
|  | "SPARSE_NORMAL_CHOLESKY cannot be used with SUITE_SPARSE " | 
|  | "because Ceres was not built with support for SuiteSparse. " | 
|  | "This requires enabling building with -DSUITESPARSE=ON."; | 
|  | return summary; | 
|  |  | 
|  | #else | 
|  |  | 
|  | EventLogger event_logger( | 
|  | "DynamicSparseNormalCholeskySolver::SuiteSparse::Solve"); | 
|  | LinearSolver::Summary summary; | 
|  | summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
|  | summary.num_iterations = 1; | 
|  | summary.message = "Success."; | 
|  |  | 
|  | SuiteSparse ss; | 
|  | const int num_cols = A->num_cols(); | 
|  | cholmod_sparse lhs = ss.CreateSparseMatrixTransposeView(A); | 
|  | event_logger.AddEvent("Setup"); | 
|  | cholmod_factor* factor = ss.AnalyzeCholesky(&lhs, &summary.message); | 
|  | event_logger.AddEvent("Analysis"); | 
|  |  | 
|  | if (factor == NULL) { | 
|  | summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | summary.termination_type = ss.Cholesky(&lhs, factor, &summary.message); | 
|  | if (summary.termination_type == LINEAR_SOLVER_SUCCESS) { | 
|  | cholmod_dense* rhs = | 
|  | ss.CreateDenseVector(rhs_and_solution, num_cols, num_cols); | 
|  | cholmod_dense* solution = ss.Solve(factor, rhs, &summary.message); | 
|  | event_logger.AddEvent("Solve"); | 
|  | ss.Free(rhs); | 
|  | if (solution != NULL) { | 
|  | memcpy( | 
|  | rhs_and_solution, solution->x, num_cols * sizeof(*rhs_and_solution)); | 
|  | ss.Free(solution); | 
|  | } else { | 
|  | summary.termination_type = LINEAR_SOLVER_FAILURE; | 
|  | } | 
|  | } | 
|  |  | 
|  | ss.Free(factor); | 
|  | event_logger.AddEvent("Teardown"); | 
|  | return summary; | 
|  |  | 
|  | #endif | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |