blob: aa6b6a974c632a6bb6c62e95d9ce3995064ce82a [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2017 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/eigensparse.h"
#ifdef CERES_USE_EIGEN_SPARSE
#include <sstream>
#include "Eigen/SparseCholesky"
#include "Eigen/SparseCore"
#include "ceres/compressed_row_sparse_matrix.h"
#include "ceres/linear_solver.h"
namespace ceres {
namespace internal {
template <typename Solver>
class EigenSparseCholeskyTemplate : public EigenSparseCholesky {
public:
EigenSparseCholeskyTemplate() : analyzed_(false) {}
virtual ~EigenSparseCholeskyTemplate() {}
virtual CompressedRowSparseMatrix::StorageType StorageType() const {
return CompressedRowSparseMatrix::LOWER_TRIANGULAR;
}
virtual LinearSolverTerminationType Factorize(
const Eigen::SparseMatrix<double>& lhs, std::string* message) {
if (!analyzed_) {
solver_.analyzePattern(lhs);
if (VLOG_IS_ON(2)) {
std::stringstream ss;
solver_.dumpMemory(ss);
VLOG(2) << "Symbolic Analysis\n" << ss.str();
}
if (solver_.info() != Eigen::Success) {
*message = "Eigen failure. Unable to find symbolic factorization.";
return LINEAR_SOLVER_FATAL_ERROR;
}
analyzed_ = true;
}
solver_.factorize(lhs);
if (solver_.info() != Eigen::Success) {
*message = "Eigen failure. Unable to find numeric factorization.";
return LINEAR_SOLVER_FAILURE;
}
return LINEAR_SOLVER_SUCCESS;
}
virtual LinearSolverTerminationType Solve(const double* rhs,
double* solution,
std::string* message) {
CHECK(analyzed_) << "Solve called without a call to Factorize first.";
VectorRef(solution, solver_.cols()) =
solver_.solve(ConstVectorRef(rhs, solver_.cols()));
if (solver_.info() != Eigen::Success) {
*message = "Eigen failure. Unable to do triangular solve.";
return LINEAR_SOLVER_FAILURE;
}
return LINEAR_SOLVER_SUCCESS;
}
virtual LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs,
std::string* message) {
CHECK_EQ(lhs->storage_type(), StorageType());
Eigen::MappedSparseMatrix<double, Eigen::ColMajor> eigen_lhs(
lhs->num_rows(),
lhs->num_rows(),
lhs->num_nonzeros(),
lhs->mutable_rows(),
lhs->mutable_cols(),
lhs->mutable_values());
return Factorize(eigen_lhs, message);
}
private:
bool analyzed_;
Solver solver_;
};
EigenSparseCholesky* EigenSparseCholesky::Create(
const OrderingType ordering_type) {
// The preprocessor gymnastics here are dealing with the fact that
// before version 3.2.2, Eigen did not support a third template
// parameter to specify the ordering and it always defaults to AMD.
#if EIGEN_VERSION_AT_LEAST(3, 2, 2)
typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>,
Eigen::Upper,
Eigen::AMDOrdering<int> >
WithAMDOrdering;
typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>,
Eigen::Upper,
Eigen::NaturalOrdering<int> >
WithNaturalOrdering;
if (ordering_type == AMD) {
return new EigenSparseCholeskyTemplate<WithAMDOrdering>();
} else {
return new EigenSparseCholeskyTemplate<WithNaturalOrdering>();
}
#else
typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>, Eigen::Upper>
WithAMDOrdering;
return new EigenSparseCholeskyTemplate<WithAMDOrdering>();
#endif
}
EigenSparseCholesky::~EigenSparseCholesky() {}
} // namespace internal
} // namespace ceres
#endif // CERES_USE_EIGEN_SPARSE