| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| // |
| // Tests shared across evaluators. The tests try all combinations of linear |
| // solver and num_eliminate_blocks (for schur-based solvers). |
| |
| #include "ceres/evaluator.h" |
| |
| #include "ceres/casts.h" |
| #include "ceres/cost_function.h" |
| #include "ceres/crs_matrix.h" |
| #include "ceres/evaluator_test_utils.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/local_parameterization.h" |
| #include "ceres/problem_impl.h" |
| #include "ceres/program.h" |
| #include "ceres/sized_cost_function.h" |
| #include "ceres/sparse_matrix.h" |
| #include "ceres/stringprintf.h" |
| #include "ceres/types.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| using std::string; |
| using std::vector; |
| |
| // TODO(keir): Consider pushing this into a common test utils file. |
| template<int kFactor, int kNumResiduals, |
| int N0 = 0, int N1 = 0, int N2 = 0, bool kSucceeds = true> |
| class ParameterIgnoringCostFunction |
| : public SizedCostFunction<kNumResiduals, N0, N1, N2> { |
| typedef SizedCostFunction<kNumResiduals, N0, N1, N2> Base; |
| public: |
| virtual bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const { |
| for (int i = 0; i < Base::num_residuals(); ++i) { |
| residuals[i] = i + 1; |
| } |
| if (jacobians) { |
| for (int k = 0; k < Base::parameter_block_sizes().size(); ++k) { |
| // The jacobians here are full sized, but they are transformed in the |
| // evaluator into the "local" jacobian. In the tests, the "subset |
| // constant" parameterization is used, which should pick out columns |
| // from these jacobians. Put values in the jacobian that make this |
| // obvious; in particular, make the jacobians like this: |
| // |
| // 1 2 3 4 ... |
| // 1 2 3 4 ... .* kFactor |
| // 1 2 3 4 ... |
| // |
| // where the multiplication by kFactor makes it easier to distinguish |
| // between Jacobians of different residuals for the same parameter. |
| if (jacobians[k] != NULL) { |
| MatrixRef jacobian(jacobians[k], |
| Base::num_residuals(), |
| Base::parameter_block_sizes()[k]); |
| for (int j = 0; j < Base::parameter_block_sizes()[k]; ++j) { |
| jacobian.col(j).setConstant(kFactor * (j + 1)); |
| } |
| } |
| } |
| } |
| return kSucceeds; |
| } |
| }; |
| |
| struct EvaluatorTestOptions { |
| EvaluatorTestOptions(LinearSolverType linear_solver_type, |
| int num_eliminate_blocks, |
| bool dynamic_sparsity = false) |
| : linear_solver_type(linear_solver_type), |
| num_eliminate_blocks(num_eliminate_blocks), |
| dynamic_sparsity(dynamic_sparsity) {} |
| |
| LinearSolverType linear_solver_type; |
| int num_eliminate_blocks; |
| bool dynamic_sparsity; |
| }; |
| |
| struct EvaluatorTest |
| : public ::testing::TestWithParam<EvaluatorTestOptions> { |
| Evaluator* CreateEvaluator(Program* program) { |
| // This program is straight from the ProblemImpl, and so has no index/offset |
| // yet; compute it here as required by the evalutor implementations. |
| program->SetParameterOffsetsAndIndex(); |
| |
| if (VLOG_IS_ON(1)) { |
| string report; |
| StringAppendF(&report, "Creating evaluator with type: %d", |
| GetParam().linear_solver_type); |
| if (GetParam().linear_solver_type == SPARSE_NORMAL_CHOLESKY) { |
| StringAppendF(&report, ", dynamic_sparsity: %d", |
| GetParam().dynamic_sparsity); |
| } |
| StringAppendF(&report, " and num_eliminate_blocks: %d", |
| GetParam().num_eliminate_blocks); |
| VLOG(1) << report; |
| } |
| Evaluator::Options options; |
| options.linear_solver_type = GetParam().linear_solver_type; |
| options.num_eliminate_blocks = GetParam().num_eliminate_blocks; |
| options.dynamic_sparsity = GetParam().dynamic_sparsity; |
| options.context = problem.context(); |
| string error; |
| return Evaluator::Create(options, program, &error); |
| } |
| |
| void EvaluateAndCompare(ProblemImpl *problem, |
| int expected_num_rows, |
| int expected_num_cols, |
| double expected_cost, |
| const double* expected_residuals, |
| const double* expected_gradient, |
| const double* expected_jacobian) { |
| scoped_ptr<Evaluator> evaluator( |
| CreateEvaluator(problem->mutable_program())); |
| int num_residuals = expected_num_rows; |
| int num_parameters = expected_num_cols; |
| |
| double cost = -1; |
| |
| Vector residuals(num_residuals); |
| residuals.setConstant(-2000); |
| |
| Vector gradient(num_parameters); |
| gradient.setConstant(-3000); |
| |
| scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| |
| ASSERT_EQ(expected_num_rows, evaluator->NumResiduals()); |
| ASSERT_EQ(expected_num_cols, evaluator->NumEffectiveParameters()); |
| ASSERT_EQ(expected_num_rows, jacobian->num_rows()); |
| ASSERT_EQ(expected_num_cols, jacobian->num_cols()); |
| |
| vector<double> state(evaluator->NumParameters()); |
| |
| ASSERT_TRUE(evaluator->Evaluate( |
| &state[0], |
| &cost, |
| expected_residuals != NULL ? &residuals[0] : NULL, |
| expected_gradient != NULL ? &gradient[0] : NULL, |
| expected_jacobian != NULL ? jacobian.get() : NULL)); |
| |
| Matrix actual_jacobian; |
| if (expected_jacobian != NULL) { |
| jacobian->ToDenseMatrix(&actual_jacobian); |
| } |
| |
| CompareEvaluations(expected_num_rows, |
| expected_num_cols, |
| expected_cost, |
| expected_residuals, |
| expected_gradient, |
| expected_jacobian, |
| cost, |
| &residuals[0], |
| &gradient[0], |
| actual_jacobian.data()); |
| } |
| |
| // Try all combinations of parameters for the evaluator. |
| void CheckAllEvaluationCombinations(const ExpectedEvaluation &expected) { |
| for (int i = 0; i < 8; ++i) { |
| EvaluateAndCompare(&problem, |
| expected.num_rows, |
| expected.num_cols, |
| expected.cost, |
| (i & 1) ? expected.residuals : NULL, |
| (i & 2) ? expected.gradient : NULL, |
| (i & 4) ? expected.jacobian : NULL); |
| } |
| } |
| |
| // The values are ignored completely by the cost function. |
| double x[2]; |
| double y[3]; |
| double z[4]; |
| |
| ProblemImpl problem; |
| }; |
| |
| void SetSparseMatrixConstant(SparseMatrix* sparse_matrix, double value) { |
| VectorRef(sparse_matrix->mutable_values(), |
| sparse_matrix->num_nonzeros()).setConstant(value); |
| } |
| |
| TEST_P(EvaluatorTest, SingleResidualProblem) { |
| problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>, |
| NULL, |
| x, y, z); |
| |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 3, 9, |
| // Cost |
| 7.0, |
| // Residuals |
| { 1.0, 2.0, 3.0 }, |
| // Gradient |
| { 6.0, 12.0, // x |
| 6.0, 12.0, 18.0, // y |
| 6.0, 12.0, 18.0, 24.0, // z |
| }, |
| // Jacobian |
| // x y z |
| { 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 1, 2, 1, 2, 3, 1, 2, 3, 4 |
| } |
| }; |
| CheckAllEvaluationCombinations(expected); |
| } |
| |
| TEST_P(EvaluatorTest, SingleResidualProblemWithPermutedParameters) { |
| // Add the parameters in explicit order to force the ordering in the program. |
| problem.AddParameterBlock(x, 2); |
| problem.AddParameterBlock(y, 3); |
| problem.AddParameterBlock(z, 4); |
| |
| // Then use a cost function which is similar to the others, but swap around |
| // the ordering of the parameters to the cost function. This shouldn't affect |
| // the jacobian evaluation, but requires explicit handling in the evaluators. |
| // At one point the compressed row evaluator had a bug that went undetected |
| // for a long time, since by chance most users added parameters to the problem |
| // in the same order that they occurred as parameters to a cost function. |
| problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 4, 3, 2>, |
| NULL, |
| z, y, x); |
| |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 3, 9, |
| // Cost |
| 7.0, |
| // Residuals |
| { 1.0, 2.0, 3.0 }, |
| // Gradient |
| { 6.0, 12.0, // x |
| 6.0, 12.0, 18.0, // y |
| 6.0, 12.0, 18.0, 24.0, // z |
| }, |
| // Jacobian |
| // x y z |
| { 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 1, 2, 1, 2, 3, 1, 2, 3, 4 |
| } |
| }; |
| CheckAllEvaluationCombinations(expected); |
| } |
| |
| TEST_P(EvaluatorTest, SingleResidualProblemWithNuisanceParameters) { |
| // These parameters are not used. |
| double a[2]; |
| double b[1]; |
| double c[1]; |
| double d[3]; |
| |
| // Add the parameters in a mixed order so the Jacobian is "checkered" with the |
| // values from the other parameters. |
| problem.AddParameterBlock(a, 2); |
| problem.AddParameterBlock(x, 2); |
| problem.AddParameterBlock(b, 1); |
| problem.AddParameterBlock(y, 3); |
| problem.AddParameterBlock(c, 1); |
| problem.AddParameterBlock(z, 4); |
| problem.AddParameterBlock(d, 3); |
| |
| problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>, |
| NULL, |
| x, y, z); |
| |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 3, 16, |
| // Cost |
| 7.0, |
| // Residuals |
| { 1.0, 2.0, 3.0 }, |
| // Gradient |
| { 0.0, 0.0, // a |
| 6.0, 12.0, // x |
| 0.0, // b |
| 6.0, 12.0, 18.0, // y |
| 0.0, // c |
| 6.0, 12.0, 18.0, 24.0, // z |
| 0.0, 0.0, 0.0, // d |
| }, |
| // Jacobian |
| // a x b y c z d |
| { 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0, |
| 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0, |
| 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0 |
| } |
| }; |
| CheckAllEvaluationCombinations(expected); |
| } |
| |
| TEST_P(EvaluatorTest, MultipleResidualProblem) { |
| // Add the parameters in explicit order to force the ordering in the program. |
| problem.AddParameterBlock(x, 2); |
| problem.AddParameterBlock(y, 3); |
| problem.AddParameterBlock(z, 4); |
| |
| // f(x, y) in R^2 |
| problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>, |
| NULL, |
| x, y); |
| |
| // g(x, z) in R^3 |
| problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>, |
| NULL, |
| x, z); |
| |
| // h(y, z) in R^4 |
| problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>, |
| NULL, |
| y, z); |
| |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 9, 9, |
| // Cost |
| // f g h |
| ( 1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0, |
| // Residuals |
| { 1.0, 2.0, // f |
| 1.0, 2.0, 3.0, // g |
| 1.0, 2.0, 3.0, 4.0 // h |
| }, |
| // Gradient |
| { 15.0, 30.0, // x |
| 33.0, 66.0, 99.0, // y |
| 42.0, 84.0, 126.0, 168.0 // z |
| }, |
| // Jacobian |
| // x y z |
| { /* f(x, y) */ 1, 2, 1, 2, 3, 0, 0, 0, 0, |
| 1, 2, 1, 2, 3, 0, 0, 0, 0, |
| |
| /* g(x, z) */ 2, 4, 0, 0, 0, 2, 4, 6, 8, |
| 2, 4, 0, 0, 0, 2, 4, 6, 8, |
| 2, 4, 0, 0, 0, 2, 4, 6, 8, |
| |
| /* h(y, z) */ 0, 0, 3, 6, 9, 3, 6, 9, 12, |
| 0, 0, 3, 6, 9, 3, 6, 9, 12, |
| 0, 0, 3, 6, 9, 3, 6, 9, 12, |
| 0, 0, 3, 6, 9, 3, 6, 9, 12 |
| } |
| }; |
| CheckAllEvaluationCombinations(expected); |
| } |
| |
| TEST_P(EvaluatorTest, MultipleResidualsWithLocalParameterizations) { |
| // Add the parameters in explicit order to force the ordering in the program. |
| problem.AddParameterBlock(x, 2); |
| |
| // Fix y's first dimension. |
| vector<int> y_fixed; |
| y_fixed.push_back(0); |
| problem.AddParameterBlock(y, 3, new SubsetParameterization(3, y_fixed)); |
| |
| // Fix z's second dimension. |
| vector<int> z_fixed; |
| z_fixed.push_back(1); |
| problem.AddParameterBlock(z, 4, new SubsetParameterization(4, z_fixed)); |
| |
| // f(x, y) in R^2 |
| problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>, |
| NULL, |
| x, y); |
| |
| // g(x, z) in R^3 |
| problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>, |
| NULL, |
| x, z); |
| |
| // h(y, z) in R^4 |
| problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>, |
| NULL, |
| y, z); |
| |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 9, 7, |
| // Cost |
| // f g h |
| ( 1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0, |
| // Residuals |
| { 1.0, 2.0, // f |
| 1.0, 2.0, 3.0, // g |
| 1.0, 2.0, 3.0, 4.0 // h |
| }, |
| // Gradient |
| { 15.0, 30.0, // x |
| 66.0, 99.0, // y |
| 42.0, 126.0, 168.0 // z |
| }, |
| // Jacobian |
| // x y z |
| { /* f(x, y) */ 1, 2, 2, 3, 0, 0, 0, |
| 1, 2, 2, 3, 0, 0, 0, |
| |
| /* g(x, z) */ 2, 4, 0, 0, 2, 6, 8, |
| 2, 4, 0, 0, 2, 6, 8, |
| 2, 4, 0, 0, 2, 6, 8, |
| |
| /* h(y, z) */ 0, 0, 6, 9, 3, 9, 12, |
| 0, 0, 6, 9, 3, 9, 12, |
| 0, 0, 6, 9, 3, 9, 12, |
| 0, 0, 6, 9, 3, 9, 12 |
| } |
| }; |
| CheckAllEvaluationCombinations(expected); |
| } |
| |
| TEST_P(EvaluatorTest, MultipleResidualProblemWithSomeConstantParameters) { |
| // The values are ignored completely by the cost function. |
| double x[2]; |
| double y[3]; |
| double z[4]; |
| |
| // Add the parameters in explicit order to force the ordering in the program. |
| problem.AddParameterBlock(x, 2); |
| problem.AddParameterBlock(y, 3); |
| problem.AddParameterBlock(z, 4); |
| |
| // f(x, y) in R^2 |
| problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>, |
| NULL, |
| x, y); |
| |
| // g(x, z) in R^3 |
| problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>, |
| NULL, |
| x, z); |
| |
| // h(y, z) in R^4 |
| problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>, |
| NULL, |
| y, z); |
| |
| // For this test, "z" is constant. |
| problem.SetParameterBlockConstant(z); |
| |
| // Create the reduced program which is missing the fixed "z" variable. |
| // Normally, the preprocessing of the program that happens in solver_impl |
| // takes care of this, but we don't want to invoke the solver here. |
| Program reduced_program; |
| vector<ParameterBlock*>* parameter_blocks = |
| problem.mutable_program()->mutable_parameter_blocks(); |
| |
| // "z" is the last parameter; save it for later and pop it off temporarily. |
| // Note that "z" will still get read during evaluation, so it cannot be |
| // deleted at this point. |
| ParameterBlock* parameter_block_z = parameter_blocks->back(); |
| parameter_blocks->pop_back(); |
| |
| ExpectedEvaluation expected = { |
| // Rows/columns |
| 9, 5, |
| // Cost |
| // f g h |
| ( 1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0, |
| // Residuals |
| { 1.0, 2.0, // f |
| 1.0, 2.0, 3.0, // g |
| 1.0, 2.0, 3.0, 4.0 // h |
| }, |
| // Gradient |
| { 15.0, 30.0, // x |
| 33.0, 66.0, 99.0, // y |
| }, |
| // Jacobian |
| // x y |
| { /* f(x, y) */ 1, 2, 1, 2, 3, |
| 1, 2, 1, 2, 3, |
| |
| /* g(x, z) */ 2, 4, 0, 0, 0, |
| 2, 4, 0, 0, 0, |
| 2, 4, 0, 0, 0, |
| |
| /* h(y, z) */ 0, 0, 3, 6, 9, |
| 0, 0, 3, 6, 9, |
| 0, 0, 3, 6, 9, |
| 0, 0, 3, 6, 9 |
| } |
| }; |
| CheckAllEvaluationCombinations(expected); |
| |
| // Restore parameter block z, so it will get freed in a consistent way. |
| parameter_blocks->push_back(parameter_block_z); |
| } |
| |
| TEST_P(EvaluatorTest, EvaluatorAbortsForResidualsThatFailToEvaluate) { |
| // Switch the return value to failure. |
| problem.AddResidualBlock( |
| new ParameterIgnoringCostFunction<20, 3, 2, 3, 4, false>, NULL, x, y, z); |
| |
| // The values are ignored. |
| double state[9]; |
| |
| scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); |
| scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| double cost; |
| EXPECT_FALSE(evaluator->Evaluate(state, &cost, NULL, NULL, NULL)); |
| } |
| |
| // In the pairs, the first argument is the linear solver type, and the second |
| // argument is num_eliminate_blocks. Changing the num_eliminate_blocks only |
| // makes sense for the schur-based solvers. |
| // |
| // Try all values of num_eliminate_blocks that make sense given that in the |
| // tests a maximum of 4 parameter blocks are present. |
| INSTANTIATE_TEST_CASE_P( |
| LinearSolvers, |
| EvaluatorTest, |
| ::testing::Values( |
| EvaluatorTestOptions(DENSE_QR, 0), |
| EvaluatorTestOptions(DENSE_SCHUR, 0), |
| EvaluatorTestOptions(DENSE_SCHUR, 1), |
| EvaluatorTestOptions(DENSE_SCHUR, 2), |
| EvaluatorTestOptions(DENSE_SCHUR, 3), |
| EvaluatorTestOptions(DENSE_SCHUR, 4), |
| EvaluatorTestOptions(SPARSE_SCHUR, 0), |
| EvaluatorTestOptions(SPARSE_SCHUR, 1), |
| EvaluatorTestOptions(SPARSE_SCHUR, 2), |
| EvaluatorTestOptions(SPARSE_SCHUR, 3), |
| EvaluatorTestOptions(SPARSE_SCHUR, 4), |
| EvaluatorTestOptions(ITERATIVE_SCHUR, 0), |
| EvaluatorTestOptions(ITERATIVE_SCHUR, 1), |
| EvaluatorTestOptions(ITERATIVE_SCHUR, 2), |
| EvaluatorTestOptions(ITERATIVE_SCHUR, 3), |
| EvaluatorTestOptions(ITERATIVE_SCHUR, 4), |
| EvaluatorTestOptions(SPARSE_NORMAL_CHOLESKY, 0, false), |
| EvaluatorTestOptions(SPARSE_NORMAL_CHOLESKY, 0, true))); |
| |
| // Simple cost function used to check if the evaluator is sensitive to |
| // state changes. |
| class ParameterSensitiveCostFunction : public SizedCostFunction<2, 2> { |
| public: |
| virtual bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const { |
| double x1 = parameters[0][0]; |
| double x2 = parameters[0][1]; |
| residuals[0] = x1 * x1; |
| residuals[1] = x2 * x2; |
| |
| if (jacobians != NULL) { |
| double* jacobian = jacobians[0]; |
| if (jacobian != NULL) { |
| jacobian[0] = 2.0 * x1; |
| jacobian[1] = 0.0; |
| jacobian[2] = 0.0; |
| jacobian[3] = 2.0 * x2; |
| } |
| } |
| return true; |
| } |
| }; |
| |
| TEST(Evaluator, EvaluatorRespectsParameterChanges) { |
| ProblemImpl problem; |
| |
| double x[2]; |
| x[0] = 1.0; |
| x[1] = 1.0; |
| |
| problem.AddResidualBlock(new ParameterSensitiveCostFunction(), NULL, x); |
| Program* program = problem.mutable_program(); |
| program->SetParameterOffsetsAndIndex(); |
| |
| Evaluator::Options options; |
| options.linear_solver_type = DENSE_QR; |
| options.num_eliminate_blocks = 0; |
| options.context = problem.context(); |
| string error; |
| scoped_ptr<Evaluator> evaluator(Evaluator::Create(options, program, &error)); |
| scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| |
| ASSERT_EQ(2, jacobian->num_rows()); |
| ASSERT_EQ(2, jacobian->num_cols()); |
| |
| double state[2]; |
| state[0] = 2.0; |
| state[1] = 3.0; |
| |
| // The original state of a residual block comes from the user's |
| // state. So the original state is 1.0, 1.0, and the only way we get |
| // the 2.0, 3.0 results in the following tests is if it respects the |
| // values in the state vector. |
| |
| // Cost only; no residuals and no jacobian. |
| { |
| double cost = -1; |
| ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL, NULL)); |
| EXPECT_EQ(48.5, cost); |
| } |
| |
| // Cost and residuals, no jacobian. |
| { |
| double cost = -1; |
| double residuals[2] = { -2, -2 }; |
| ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL, NULL)); |
| EXPECT_EQ(48.5, cost); |
| EXPECT_EQ(4, residuals[0]); |
| EXPECT_EQ(9, residuals[1]); |
| } |
| |
| // Cost, residuals, and jacobian. |
| { |
| double cost = -1; |
| double residuals[2] = { -2, -2}; |
| SetSparseMatrixConstant(jacobian.get(), -1); |
| ASSERT_TRUE(evaluator->Evaluate(state, |
| &cost, |
| residuals, |
| NULL, |
| jacobian.get())); |
| EXPECT_EQ(48.5, cost); |
| EXPECT_EQ(4, residuals[0]); |
| EXPECT_EQ(9, residuals[1]); |
| Matrix actual_jacobian; |
| jacobian->ToDenseMatrix(&actual_jacobian); |
| |
| Matrix expected_jacobian(2, 2); |
| expected_jacobian |
| << 2 * state[0], 0, |
| 0, 2 * state[1]; |
| |
| EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) |
| << "Actual:\n" << actual_jacobian |
| << "\nExpected:\n" << expected_jacobian; |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |