blob: 6e39a65e8827400ca2a7fa2dab84d5d56d058240 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// Interface for and implementation of various Line search algorithms.
#ifndef CERES_INTERNAL_LINE_SEARCH_H_
#define CERES_INTERNAL_LINE_SEARCH_H_
#include <string>
#include <vector>
#include "ceres/function_sample.h"
#include "ceres/internal/eigen.h"
#include "ceres/internal/port.h"
#include "ceres/types.h"
namespace ceres {
namespace internal {
class Evaluator;
class LineSearchFunction;
// Line search is another name for a one dimensional optimization
// algorithm. The name "line search" comes from the fact one
// dimensional optimization problems that arise as subproblems of
// general multidimensional optimization problems.
//
// While finding the exact minimum of a one dimensionl function is
// hard, instances of LineSearch find a point that satisfies a
// sufficient decrease condition. Depending on the particular
// condition used, we get a variety of different line search
// algorithms, e.g., Armijo, Wolfe etc.
class LineSearch {
public:
struct Summary;
struct Options {
Options()
: interpolation_type(CUBIC),
sufficient_decrease(1e-4),
max_step_contraction(1e-3),
min_step_contraction(0.9),
min_step_size(1e-9),
max_num_iterations(20),
sufficient_curvature_decrease(0.9),
max_step_expansion(10.0),
is_silent(false),
function(NULL) {}
// Degree of the polynomial used to approximate the objective
// function.
LineSearchInterpolationType interpolation_type;
// Armijo and Wolfe line search parameters.
// Solving the line search problem exactly is computationally
// prohibitive. Fortunately, line search based optimization
// algorithms can still guarantee convergence if instead of an
// exact solution, the line search algorithm returns a solution
// which decreases the value of the objective function
// sufficiently. More precisely, we are looking for a step_size
// s.t.
//
// f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size
double sufficient_decrease;
// In each iteration of the Armijo / Wolfe line search,
//
// new_step_size >= max_step_contraction * step_size
//
// Note that by definition, for contraction:
//
// 0 < max_step_contraction < min_step_contraction < 1
//
double max_step_contraction;
// In each iteration of the Armijo / Wolfe line search,
//
// new_step_size <= min_step_contraction * step_size
// Note that by definition, for contraction:
//
// 0 < max_step_contraction < min_step_contraction < 1
//
double min_step_contraction;
// If during the line search, the step_size falls below this
// value, it is truncated to zero.
double min_step_size;
// Maximum number of trial step size iterations during each line search,
// if a step size satisfying the search conditions cannot be found within
// this number of trials, the line search will terminate.
int max_num_iterations;
// Wolfe-specific line search parameters.
// The strong Wolfe conditions consist of the Armijo sufficient
// decrease condition, and an additional requirement that the
// step-size be chosen s.t. the _magnitude_ ('strong' Wolfe
// conditions) of the gradient along the search direction
// decreases sufficiently. Precisely, this second condition
// is that we seek a step_size s.t.
//
// |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|
//
// Where f() is the line search objective and f'() is the derivative
// of f w.r.t step_size (d f / d step_size).
double sufficient_curvature_decrease;
// During the bracketing phase of the Wolfe search, the step size is
// increased until either a point satisfying the Wolfe conditions is
// found, or an upper bound for a bracket containing a point satisfying
// the conditions is found. Precisely, at each iteration of the
// expansion:
//
// new_step_size <= max_step_expansion * step_size.
//
// By definition for expansion, max_step_expansion > 1.0.
double max_step_expansion;
bool is_silent;
// The one dimensional function that the line search algorithm
// minimizes.
LineSearchFunction* function;
};
// Result of the line search.
struct Summary {
Summary()
: success(false),
num_function_evaluations(0),
num_gradient_evaluations(0),
num_iterations(0),
cost_evaluation_time_in_seconds(-1.0),
gradient_evaluation_time_in_seconds(-1.0),
polynomial_minimization_time_in_seconds(-1.0),
total_time_in_seconds(-1.0) {}
bool success;
FunctionSample optimal_point;
int num_function_evaluations;
int num_gradient_evaluations;
int num_iterations;
// Cumulative time spent evaluating the value of the cost function across
// all iterations.
double cost_evaluation_time_in_seconds;
// Cumulative time spent evaluating the gradient of the cost function across
// all iterations.
double gradient_evaluation_time_in_seconds;
// Cumulative time spent minimizing the interpolating polynomial to compute
// the next candidate step size across all iterations.
double polynomial_minimization_time_in_seconds;
double total_time_in_seconds;
std::string error;
};
explicit LineSearch(const LineSearch::Options& options);
virtual ~LineSearch() {}
static LineSearch* Create(const LineSearchType line_search_type,
const LineSearch::Options& options,
std::string* error);
// Perform the line search.
//
// step_size_estimate must be a positive number.
//
// initial_cost and initial_gradient are the values and gradient of
// the function at zero.
// summary must not be null and will contain the result of the line
// search.
//
// Summary::success is true if a non-zero step size is found.
void Search(double step_size_estimate,
double initial_cost,
double initial_gradient,
Summary* summary) const;
double InterpolatingPolynomialMinimizingStepSize(
const LineSearchInterpolationType& interpolation_type,
const FunctionSample& lowerbound_sample,
const FunctionSample& previous_sample,
const FunctionSample& current_sample,
const double min_step_size,
const double max_step_size) const;
protected:
const LineSearch::Options& options() const { return options_; }
private:
virtual void DoSearch(double step_size_estimate,
double initial_cost,
double initial_gradient,
Summary* summary) const = 0;
private:
LineSearch::Options options_;
};
// An object used by the line search to access the function values
// and gradient of the one dimensional function being optimized.
//
// In practice, this object provides access to the objective
// function value and the directional derivative of the underlying
// optimization problem along a specific search direction.
class LineSearchFunction {
public:
explicit LineSearchFunction(Evaluator* evaluator);
void Init(const Vector& position, const Vector& direction);
// Evaluate the line search objective
//
// f(x) = p(position + x * direction)
//
// Where, p is the objective function of the general optimization
// problem.
//
// evaluate_gradient controls whether the gradient will be evaluated
// or not.
//
// On return output->*_is_valid indicate indicate whether the
// corresponding fields have numerically valid values or not.
void Evaluate(double x, bool evaluate_gradient, FunctionSample* output);
double DirectionInfinityNorm() const;
// Resets to now, the start point for the results from TimeStatistics().
void ResetTimeStatistics();
void TimeStatistics(double* cost_evaluation_time_in_seconds,
double* gradient_evaluation_time_in_seconds) const;
const Vector& position() const { return position_; }
const Vector& direction() const { return direction_; }
private:
Evaluator* evaluator_;
Vector position_;
Vector direction_;
// scaled_direction = x * direction_;
Vector scaled_direction_;
// We may not exclusively own the evaluator (e.g. in the Trust Region
// minimizer), hence we need to save the initial evaluation durations for the
// value & gradient to accurately determine the duration of the evaluations
// we invoked. These are reset by a call to ResetTimeStatistics().
double initial_evaluator_residual_time_in_seconds;
double initial_evaluator_jacobian_time_in_seconds;
};
// Backtracking and interpolation based Armijo line search. This
// implementation is based on the Armijo line search that ships in the
// minFunc package by Mark Schmidt.
//
// For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html
class ArmijoLineSearch : public LineSearch {
public:
explicit ArmijoLineSearch(const LineSearch::Options& options);
virtual ~ArmijoLineSearch() {}
private:
virtual void DoSearch(double step_size_estimate,
double initial_cost,
double initial_gradient,
Summary* summary) const;
};
// Bracketing / Zoom Strong Wolfe condition line search. This implementation
// is based on the pseudo-code algorithm presented in Nocedal & Wright [1]
// (p60-61) with inspiration from the WolfeLineSearch which ships with the
// minFunc package by Mark Schmidt [2].
//
// [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed., Springer, 1999.
// [2] http://www.di.ens.fr/~mschmidt/Software/minFunc.html.
class WolfeLineSearch : public LineSearch {
public:
explicit WolfeLineSearch(const LineSearch::Options& options);
virtual ~WolfeLineSearch() {}
// Returns true iff either a valid point, or valid bracket are found.
bool BracketingPhase(const FunctionSample& initial_position,
const double step_size_estimate,
FunctionSample* bracket_low,
FunctionSample* bracket_high,
bool* perform_zoom_search,
Summary* summary) const;
// Returns true iff final_line_sample satisfies strong Wolfe conditions.
bool ZoomPhase(const FunctionSample& initial_position,
FunctionSample bracket_low,
FunctionSample bracket_high,
FunctionSample* solution,
Summary* summary) const;
private:
virtual void DoSearch(double step_size_estimate,
double initial_cost,
double initial_gradient,
Summary* summary) const;
};
} // namespace internal
} // namespace ceres
#endif // CERES_INTERNAL_LINE_SEARCH_H_