| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2018 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include <iostream> |
| #include "Eigen/Dense" |
| #include "benchmark/benchmark.h" |
| #include "ceres/small_blas.h" |
| |
| namespace ceres { |
| |
| // Benchmarking matrix-matrix multiply routines and optimizing memory |
| // access requires that we make sure that they are not just sitting in |
| // the cache. So, as the benchmarking routine iterates, we need to |
| // multiply new/different matrice. Allocating/creating these objects |
| // in the benchmarking loop is too heavy duty, so we create them |
| // before hand and cycle through them in the benchmark. This class, |
| // given the size of the matrices creates such objects for use in the |
| // benchmark. |
| class MatrixMatrixMultiplyData { |
| public: |
| MatrixMatrixMultiplyData( |
| int a_rows, int a_cols, int b_rows, int b_cols, int c_rows, int c_cols) { |
| num_elements_ = 1000; |
| a_size_ = a_rows * a_cols; |
| b_size_ = b_rows * b_cols; |
| c_size_ = c_cols * c_cols; |
| a_.resize(num_elements_ * a_size_, 1.00001); |
| b_.resize(num_elements_ * b_size_, 1.00002); |
| c_.resize(num_elements_ * c_size_, 1.00003); |
| } |
| |
| int num_elements() const { return num_elements_; } |
| double* GetA(int i) { return &a_[i * a_size_]; }; |
| double* GetB(int i) { return &b_[i * b_size_]; }; |
| double* GetC(int i) { return &c_[i * c_size_]; }; |
| |
| private: |
| int num_elements_; |
| int a_size_; |
| int b_size_; |
| int c_size_; |
| std::vector<double> a_; |
| std::vector<double> b_; |
| std::vector<double> c_; |
| }; |
| |
| static void MatrixMatrixMultiplySizeArguments( |
| benchmark::internal::Benchmark* benchmark) { |
| std::vector<int> b_rows = {2, 4, 6, 8}; |
| std::vector<int> b_cols = {2, 4, 6, 8, 10, 12, 15}; |
| std::vector<int> c_cols = {2, 4, 6, 8, 10, 12, 15}; |
| for (int i : b_rows) { |
| for (int j : b_cols) { |
| for (int k : c_cols) { |
| benchmark->Args({i, j, k}); |
| } |
| } |
| } |
| } |
| |
| void BM_MatrixMatrixMultiplyDynamic(benchmark::State& state) { |
| const int b_rows = state.range(0); |
| const int b_cols = state.range(1); |
| const int c_cols = state.range(2); |
| MatrixMatrixMultiplyData data(b_rows, c_cols, b_rows, b_cols, b_cols, c_cols); |
| |
| const int num_elements = data.num_elements(); |
| int i = 0; |
| for (auto _ : state) { |
| i = (i + 1) % num_elements; |
| // a += b * c |
| internal::MatrixMatrixMultiply<Eigen::Dynamic, |
| Eigen::Dynamic, |
| Eigen::Dynamic, |
| Eigen::Dynamic, |
| 1>(data.GetB(i), b_rows, b_cols, |
| data.GetC(i), b_cols, c_cols, |
| data.GetA(i), 0, 0, b_rows, c_cols); |
| i = (i + 1) % num_elements; |
| } |
| } |
| |
| BENCHMARK(BM_MatrixMatrixMultiplyDynamic) |
| ->Apply(MatrixMatrixMultiplySizeArguments); |
| |
| static void MatrixTransposeMatrixMultiplySizeArguments( |
| benchmark::internal::Benchmark* benchmark) { |
| std::vector<int> b_rows = {2, 4, 6, 8}; |
| std::vector<int> b_cols = {2, 4, 5, 8, 10, 12, 15}; |
| std::vector<int> c_cols = {2, 4, 6, 8}; |
| for (int i : b_rows) { |
| for (int j : b_cols) { |
| for (int k : c_cols) { |
| benchmark->Args({i, j, k}); |
| } |
| } |
| } |
| } |
| |
| void BM_MatrixTransposeMatrixMultiplyDynamic(benchmark::State& state) { |
| const int b_rows = state.range(0); |
| const int b_cols = state.range(1); |
| const int c_cols = state.range(2); |
| MatrixMatrixMultiplyData data(b_cols, c_cols, b_rows, b_cols, b_cols, c_cols); |
| |
| const int num_elements = data.num_elements(); |
| int i = 0; |
| for (auto _ : state) { |
| i = (i + 1) % num_elements; |
| // a += b * c |
| internal::MatrixTransposeMatrixMultiply<Eigen::Dynamic, |
| Eigen::Dynamic, |
| Eigen::Dynamic, |
| Eigen::Dynamic, |
| 1>(data.GetB(i), b_rows, b_cols, |
| data.GetC(i), b_cols, c_cols, |
| data.GetA(i), 0, 0, b_cols, c_cols); |
| i = (i + 1) % num_elements; |
| } |
| } |
| |
| BENCHMARK(BM_MatrixTransposeMatrixMultiplyDynamic) |
| ->Apply(MatrixTransposeMatrixMultiplySizeArguments); |
| |
| } // namespace ceres |
| |
| BENCHMARK_MAIN(); |