| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2017 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_INTERNAL_SUBSET_PRECONDITIONER_H_ |
| #define CERES_INTERNAL_SUBSET_PRECONDITIONER_H_ |
| |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/preconditioner.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| class BlockSparseMatrix; |
| class SparseCholesky; |
| class InnerProductComputer; |
| |
| // Subset preconditioning, uses a subset of the rows of the Jacobian |
| // to construct a preconditioner for the normal equations. |
| // |
| // To keep the interface simple, we assume that the matrix A has |
| // already been re-ordered that the user wishes to some subset of the |
| // bottom row blocks of the matrix as the preconditioner. This is |
| // controlled by |
| // Preconditioner::Options::subset_preconditioner_start_row_block. |
| // |
| // When using the subset preconditioner, all row blocks starting |
| // from this row block are used to construct the preconditioner. |
| // |
| // More precisely the matrix A is horizontally partitioned as |
| // |
| // A = [P] |
| // [Q] |
| // |
| // where P as subset_preconditioner_start_row_block row blocks, |
| // and the preconditioner is the inverse of the matrix Q'Q. |
| // |
| // Obviously, the smaller this number, the more accurate and |
| // computationally expensive this preconditioner will be. |
| // |
| // See the tests for example usage. |
| class SubsetPreconditioner : public BlockSparseMatrixPreconditioner { |
| public: |
| SubsetPreconditioner(const Preconditioner::Options& options, |
| const BlockSparseMatrix& A); |
| virtual ~SubsetPreconditioner(); |
| |
| // Preconditioner interface |
| virtual void RightMultiply(const double* x, double* y) const; |
| virtual int num_rows() const { return num_cols_; } |
| virtual int num_cols() const { return num_cols_; } |
| |
| private: |
| virtual bool UpdateImpl(const BlockSparseMatrix& A, const double* D); |
| |
| const Preconditioner::Options options_; |
| const int num_cols_; |
| scoped_ptr<SparseCholesky> sparse_cholesky_; |
| scoped_ptr<InnerProductComputer> inner_product_computer_; |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_INTERNAL_SUBSET_PRECONDITIONER_H_ |