blob: f8bfa3a9ec160ae1cf57c47c1bb145350112a5fe [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
#ifndef CERES_INTERNAL_TEST_UTIL_H_
#define CERES_INTERNAL_TEST_UTIL_H_
#include <string>
#include "ceres/internal/port.h"
#include "ceres/problem.h"
#include "ceres/solver.h"
#include "ceres/stringprintf.h"
#include "gtest/gtest.h"
namespace ceres {
namespace internal {
// Expects that x and y have a relative difference of no more than
// max_abs_relative_difference. If either x or y is zero, then the relative
// difference is interpreted as an absolute difference.
bool ExpectClose(double x, double y, double max_abs_relative_difference);
// Expects that for all i = 1,.., n - 1
//
// |p[i] - q[i]| / max(|p[i]|, |q[i]|) < tolerance
void ExpectArraysClose(int n,
const double* p,
const double* q,
double tolerance);
// Expects that for all i = 1,.., n - 1
//
// |p[i] / max_norm_p - q[i] / max_norm_q| < tolerance
//
// where max_norm_p and max_norm_q are the max norms of the arrays p
// and q respectively.
void ExpectArraysCloseUptoScale(int n,
const double* p,
const double* q,
double tolerance);
// Construct a fully qualified path for the test file depending on the
// local build/testing environment.
std::string TestFileAbsolutePath(const std::string& filename);
// Struct used for configuring the solver. Used by end-to-end tests.
struct SolverConfig {
SolverConfig(
LinearSolverType linear_solver_type,
SparseLinearAlgebraLibraryType
sparse_linear_algebra_library_type = NO_SPARSE,
bool use_automatic_ordering = true,
PreconditionerType preconditioner_type = IDENTITY,
int num_threads = 1)
: linear_solver_type(linear_solver_type),
sparse_linear_algebra_library_type(sparse_linear_algebra_library_type),
use_automatic_ordering(use_automatic_ordering),
preconditioner_type(preconditioner_type),
num_threads(num_threads) {
}
std::string ToString() const {
return StringPrintf(
"(%s, %s, %s, %s, %d)",
LinearSolverTypeToString(linear_solver_type),
SparseLinearAlgebraLibraryTypeToString(
sparse_linear_algebra_library_type),
use_automatic_ordering ? "AUTOMATIC" : "USER",
PreconditionerTypeToString(preconditioner_type),
num_threads);
}
void UpdateOptions(Solver::Options* options) const {
options->linear_solver_type = linear_solver_type;
options->sparse_linear_algebra_library_type =
sparse_linear_algebra_library_type;
options->preconditioner_type = preconditioner_type;
options->num_threads = num_threads;
if (use_automatic_ordering) {
options->linear_solver_ordering.reset();
}
}
LinearSolverType linear_solver_type;
SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
bool use_automatic_ordering;
PreconditionerType preconditioner_type;
int num_threads;
};
SolverConfig ThreadedSolverConfig(
LinearSolverType linear_solver_type,
SparseLinearAlgebraLibraryType
sparse_linear_algebra_library_type = NO_SPARSE,
bool use_automatic_ordering = true,
PreconditionerType preconditioner_type = IDENTITY);
// A templated test fixture, that is used for testing Ceres end to end
// by computing a solution to the problem for a given solver
// configuration and comparing it to a reference solver configuration.
//
// It is assumed that the SystemTestProblem has an Solver::Options
// struct that contains the reference Solver configuration.
template <class SystemTestProblem>
class SystemTest : public::testing::Test {
protected:
virtual void SetUp() {
SystemTestProblem system_test_problem;
SolveAndEvaluateFinalResiduals(
*system_test_problem.mutable_solver_options(),
system_test_problem.mutable_problem(),
&expected_final_residuals_);
}
void RunSolverForConfigAndExpectResidualsMatch(const SolverConfig& config) {
LOG(INFO) << "Running solver configuration: "
<< config.ToString();
SystemTestProblem system_test_problem;
config.UpdateOptions(system_test_problem.mutable_solver_options());
std::vector<double> final_residuals;
SolveAndEvaluateFinalResiduals(
*system_test_problem.mutable_solver_options(),
system_test_problem.mutable_problem(),
&final_residuals);
// We compare solutions by comparing their residual vectors. We do
// not compare parameter vectors because it is much more brittle
// and error prone to do so, since the same problem can have
// nearly the same residuals at two completely different positions
// in parameter space.
CHECK_EQ(expected_final_residuals_.size(), final_residuals.size());
for (int i = 0; i < final_residuals.size(); ++i) {
EXPECT_NEAR(final_residuals[i],
expected_final_residuals_[i],
SystemTestProblem::kResidualTolerance)
<< "Not close enough residual:" << i;
}
}
void SolveAndEvaluateFinalResiduals(const Solver::Options& options,
Problem* problem,
std::vector<double>* final_residuals) {
Solver::Summary summary;
Solve(options, problem, &summary);
CHECK_NE(summary.termination_type, ceres::FAILURE);
problem->Evaluate(Problem::EvaluateOptions(),
NULL,
final_residuals,
NULL,
NULL);
}
std::vector<double> expected_final_residuals_;
};
} // namespace internal
} // namespace ceres
#endif // CERES_INTERNAL_TEST_UTIL_H_