|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // A simple example of optimizing a sampled function by using cubic | 
|  | // interpolation. | 
|  |  | 
|  | #include "ceres/ceres.h" | 
|  | #include "ceres/cubic_interpolation.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | using Interpolator = ceres::CubicInterpolator<ceres::Grid1D<double>>; | 
|  |  | 
|  | // A simple cost functor that interfaces an interpolated table of | 
|  | // values with automatic differentiation. | 
|  | struct InterpolatedCostFunctor { | 
|  | explicit InterpolatedCostFunctor(const Interpolator& interpolator) | 
|  | : interpolator(interpolator) {} | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* x, T* residuals) const { | 
|  | interpolator.Evaluate(*x, residuals); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ceres::CostFunction* Create(const Interpolator& interpolator) { | 
|  | return new ceres::AutoDiffCostFunction<InterpolatedCostFunctor, 1, 1>( | 
|  | interpolator); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Interpolator& interpolator; | 
|  | }; | 
|  |  | 
|  | int main(int argc, char** argv) { | 
|  | google::InitGoogleLogging(argv[0]); | 
|  |  | 
|  | // Evaluate the function f(x) = (x - 4.5)^2; | 
|  | const int kNumSamples = 10; | 
|  | double values[kNumSamples]; | 
|  | for (int i = 0; i < kNumSamples; ++i) { | 
|  | values[i] = (i - 4.5) * (i - 4.5); | 
|  | } | 
|  |  | 
|  | ceres::Grid1D<double> array(values, 0, kNumSamples); | 
|  | Interpolator interpolator(array); | 
|  |  | 
|  | double x = 1.0; | 
|  | ceres::Problem problem; | 
|  | ceres::CostFunction* cost_function = | 
|  | InterpolatedCostFunctor::Create(interpolator); | 
|  | problem.AddResidualBlock(cost_function, nullptr, &x); | 
|  |  | 
|  | ceres::Solver::Options options; | 
|  | options.minimizer_progress_to_stdout = true; | 
|  | ceres::Solver::Summary summary; | 
|  | ceres::Solve(options, &problem, &summary); | 
|  | std::cout << summary.BriefReport() << "\n"; | 
|  | std::cout << "Expected x: 4.5. Actual x : " << x << std::endl; | 
|  | return 0; | 
|  | } |