| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 | // | 
 | // A minimal, self-contained bundle adjuster using Ceres, that reads | 
 | // files from University of Washington' Bundle Adjustment in the Large dataset: | 
 | // http://grail.cs.washington.edu/projects/bal | 
 | // | 
 | // This does not use the best configuration for solving; see the more involved | 
 | // bundle_adjuster.cc file for details. | 
 |  | 
 | #include <cmath> | 
 | #include <cstdio> | 
 | #include <iostream> | 
 |  | 
 | #include "ceres/ceres.h" | 
 | #include "ceres/rotation.h" | 
 |  | 
 | // Read a Bundle Adjustment in the Large dataset. | 
 | class BALProblem { | 
 |  public: | 
 |   ~BALProblem() { | 
 |     delete[] point_index_; | 
 |     delete[] camera_index_; | 
 |     delete[] observations_; | 
 |     delete[] parameters_; | 
 |   } | 
 |  | 
 |   int num_observations() const { return num_observations_; } | 
 |   const double* observations() const { return observations_; } | 
 |   double* mutable_cameras() { return parameters_; } | 
 |   double* mutable_points() { return parameters_ + 9 * num_cameras_; } | 
 |  | 
 |   double* mutable_camera_for_observation(int i) { | 
 |     return mutable_cameras() + camera_index_[i] * 9; | 
 |   } | 
 |   double* mutable_point_for_observation(int i) { | 
 |     return mutable_points() + point_index_[i] * 3; | 
 |   } | 
 |  | 
 |   bool LoadFile(const char* filename) { | 
 |     FILE* fptr = fopen(filename, "r"); | 
 |     if (fptr == nullptr) { | 
 |       return false; | 
 |     }; | 
 |  | 
 |     FscanfOrDie(fptr, "%d", &num_cameras_); | 
 |     FscanfOrDie(fptr, "%d", &num_points_); | 
 |     FscanfOrDie(fptr, "%d", &num_observations_); | 
 |  | 
 |     point_index_ = new int[num_observations_]; | 
 |     camera_index_ = new int[num_observations_]; | 
 |     observations_ = new double[2 * num_observations_]; | 
 |  | 
 |     num_parameters_ = 9 * num_cameras_ + 3 * num_points_; | 
 |     parameters_ = new double[num_parameters_]; | 
 |  | 
 |     for (int i = 0; i < num_observations_; ++i) { | 
 |       FscanfOrDie(fptr, "%d", camera_index_ + i); | 
 |       FscanfOrDie(fptr, "%d", point_index_ + i); | 
 |       for (int j = 0; j < 2; ++j) { | 
 |         FscanfOrDie(fptr, "%lf", observations_ + 2 * i + j); | 
 |       } | 
 |     } | 
 |  | 
 |     for (int i = 0; i < num_parameters_; ++i) { | 
 |       FscanfOrDie(fptr, "%lf", parameters_ + i); | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename T> | 
 |   void FscanfOrDie(FILE* fptr, const char* format, T* value) { | 
 |     int num_scanned = fscanf(fptr, format, value); | 
 |     if (num_scanned != 1) { | 
 |       LOG(FATAL) << "Invalid UW data file."; | 
 |     } | 
 |   } | 
 |  | 
 |   int num_cameras_; | 
 |   int num_points_; | 
 |   int num_observations_; | 
 |   int num_parameters_; | 
 |  | 
 |   int* point_index_; | 
 |   int* camera_index_; | 
 |   double* observations_; | 
 |   double* parameters_; | 
 | }; | 
 |  | 
 | // Templated pinhole camera model for used with Ceres.  The camera is | 
 | // parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for | 
 | // focal length and 2 for radial distortion. The principal point is not modeled | 
 | // (i.e. it is assumed be located at the image center). | 
 | struct SnavelyReprojectionError { | 
 |   SnavelyReprojectionError(double observed_x, double observed_y) | 
 |       : observed_x(observed_x), observed_y(observed_y) {} | 
 |  | 
 |   template <typename T> | 
 |   bool operator()(const T* const camera, | 
 |                   const T* const point, | 
 |                   T* residuals) const { | 
 |     // camera[0,1,2] are the angle-axis rotation. | 
 |     T p[3]; | 
 |     ceres::AngleAxisRotatePoint(camera, point, p); | 
 |  | 
 |     // camera[3,4,5] are the translation. | 
 |     p[0] += camera[3]; | 
 |     p[1] += camera[4]; | 
 |     p[2] += camera[5]; | 
 |  | 
 |     // Compute the center of distortion. The sign change comes from | 
 |     // the camera model that Noah Snavely's Bundler assumes, whereby | 
 |     // the camera coordinate system has a negative z axis. | 
 |     T xp = -p[0] / p[2]; | 
 |     T yp = -p[1] / p[2]; | 
 |  | 
 |     // Apply second and fourth order radial distortion. | 
 |     const T& l1 = camera[7]; | 
 |     const T& l2 = camera[8]; | 
 |     T r2 = xp * xp + yp * yp; | 
 |     T distortion = 1.0 + r2 * (l1 + l2 * r2); | 
 |  | 
 |     // Compute final projected point position. | 
 |     const T& focal = camera[6]; | 
 |     T predicted_x = focal * distortion * xp; | 
 |     T predicted_y = focal * distortion * yp; | 
 |  | 
 |     // The error is the difference between the predicted and observed position. | 
 |     residuals[0] = predicted_x - observed_x; | 
 |     residuals[1] = predicted_y - observed_y; | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Factory to hide the construction of the CostFunction object from | 
 |   // the client code. | 
 |   static ceres::CostFunction* Create(const double observed_x, | 
 |                                      const double observed_y) { | 
 |     return new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>( | 
 |         observed_x, observed_y); | 
 |   } | 
 |  | 
 |   double observed_x; | 
 |   double observed_y; | 
 | }; | 
 |  | 
 | int main(int argc, char** argv) { | 
 |   google::InitGoogleLogging(argv[0]); | 
 |   if (argc != 2) { | 
 |     std::cerr << "usage: simple_bundle_adjuster <bal_problem>\n"; | 
 |     return 1; | 
 |   } | 
 |  | 
 |   BALProblem bal_problem; | 
 |   if (!bal_problem.LoadFile(argv[1])) { | 
 |     std::cerr << "ERROR: unable to open file " << argv[1] << "\n"; | 
 |     return 1; | 
 |   } | 
 |  | 
 |   const double* observations = bal_problem.observations(); | 
 |  | 
 |   // Create residuals for each observation in the bundle adjustment problem. The | 
 |   // parameters for cameras and points are added automatically. | 
 |   ceres::Problem problem; | 
 |   for (int i = 0; i < bal_problem.num_observations(); ++i) { | 
 |     // Each Residual block takes a point and a camera as input and outputs a 2 | 
 |     // dimensional residual. Internally, the cost function stores the observed | 
 |     // image location and compares the reprojection against the observation. | 
 |  | 
 |     ceres::CostFunction* cost_function = SnavelyReprojectionError::Create( | 
 |         observations[2 * i + 0], observations[2 * i + 1]); | 
 |     problem.AddResidualBlock(cost_function, | 
 |                              nullptr /* squared loss */, | 
 |                              bal_problem.mutable_camera_for_observation(i), | 
 |                              bal_problem.mutable_point_for_observation(i)); | 
 |   } | 
 |  | 
 |   // Make Ceres automatically detect the bundle structure. Note that the | 
 |   // standard solver, SPARSE_NORMAL_CHOLESKY, also works fine but it is slower | 
 |   // for standard bundle adjustment problems. | 
 |   ceres::Solver::Options options; | 
 |   options.linear_solver_type = ceres::DENSE_SCHUR; | 
 |   options.minimizer_progress_to_stdout = true; | 
 |  | 
 |   ceres::Solver::Summary summary; | 
 |   ceres::Solve(options, &problem, &summary); | 
 |   std::cout << summary.FullReport() << "\n"; | 
 |   return 0; | 
 | } |