|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | // | 
|  | // Computation of the Jacobian matrix for vector-valued functions of multiple | 
|  | // variables, using automatic differentiation based on the implementation of | 
|  | // dual numbers in jet.h. Before reading the rest of this file, it is advisable | 
|  | // to read jet.h's header comment in detail. | 
|  | // | 
|  | // The helper wrapper AutoDifferentiate() computes the jacobian of | 
|  | // functors with templated operator() taking this form: | 
|  | // | 
|  | //   struct F { | 
|  | //     template<typename T> | 
|  | //     bool operator()(const T *x, const T *y, ..., T *z) { | 
|  | //       // Compute z[] based on x[], y[], ... | 
|  | //       // return true if computation succeeded, false otherwise. | 
|  | //     } | 
|  | //   }; | 
|  | // | 
|  | // All inputs and outputs may be vector-valued. | 
|  | // | 
|  | // To understand how jets are used to compute the jacobian, a | 
|  | // picture may help. Consider a vector-valued function, F, returning 3 | 
|  | // dimensions and taking a vector-valued parameter of 4 dimensions: | 
|  | // | 
|  | //     y            x | 
|  | //   [ * ]    F   [ * ] | 
|  | //   [ * ]  <---  [ * ] | 
|  | //   [ * ]        [ * ] | 
|  | //                [ * ] | 
|  | // | 
|  | // Similar to the 2-parameter example for f described in jet.h, computing the | 
|  | // jacobian dy/dx is done by substituting a suitable jet object for x and all | 
|  | // intermediate steps of the computation of F. Since x is has 4 dimensions, use | 
|  | // a Jet<double, 4>. | 
|  | // | 
|  | // Before substituting a jet object for x, the dual components are set | 
|  | // appropriately for each dimension of x: | 
|  | // | 
|  | //          y                       x | 
|  | //   [ * | * * * * ]    f   [ * | 1 0 0 0 ]   x0 | 
|  | //   [ * | * * * * ]  <---  [ * | 0 1 0 0 ]   x1 | 
|  | //   [ * | * * * * ]        [ * | 0 0 1 0 ]   x2 | 
|  | //         ---+---          [ * | 0 0 0 1 ]   x3 | 
|  | //            |                   ^ ^ ^ ^ | 
|  | //          dy/dx                 | | | +----- infinitesimal for x3 | 
|  | //                                | | +------- infinitesimal for x2 | 
|  | //                                | +--------- infinitesimal for x1 | 
|  | //                                +----------- infinitesimal for x0 | 
|  | // | 
|  | // The reason to set the internal 4x4 submatrix to the identity is that we wish | 
|  | // to take the derivative of y separately with respect to each dimension of x. | 
|  | // Each column of the 4x4 identity is therefore for a single component of the | 
|  | // independent variable x. | 
|  | // | 
|  | // Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the | 
|  | // extended y vector, indicated in the above diagram. | 
|  | // | 
|  | // Functors with multiple parameters | 
|  | // --------------------------------- | 
|  | // In practice, it is often convenient to use a function f of two or more | 
|  | // vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet | 
|  | // framework is designed for a single-parameter vector-valued input. The wrapper | 
|  | // in this file addresses this issue adding support for functions with one or | 
|  | // more parameter vectors. | 
|  | // | 
|  | // To support multiple parameters, all the parameter vectors are concatenated | 
|  | // into one and treated as a single parameter vector, except that since the | 
|  | // functor expects different inputs, we need to construct the jets as if they | 
|  | // were part of a single parameter vector. The extended jets are passed | 
|  | // separately for each parameter. | 
|  | // | 
|  | // For example, consider a functor F taking two vector parameters, p[2] and | 
|  | // q[3], and producing an output y[4]: | 
|  | // | 
|  | //   struct F { | 
|  | //     template<typename T> | 
|  | //     bool operator()(const T *p, const T *q, T *z) { | 
|  | //       // ... | 
|  | //     } | 
|  | //   }; | 
|  | // | 
|  | // In this case, the necessary jet type is Jet<double, 5>. Here is a | 
|  | // visualization of the jet objects in this case: | 
|  | // | 
|  | //          Dual components for p ----+ | 
|  | //                                    | | 
|  | //                                   -+- | 
|  | //           y                 [ * | 1 0 | 0 0 0 ]    --- p[0] | 
|  | //                             [ * | 0 1 | 0 0 0 ]    --- p[1] | 
|  | //   [ * | . . | + + + ]         | | 
|  | //   [ * | . . | + + + ]         v | 
|  | //   [ * | . . | + + + ]  <--- F(p, q) | 
|  | //   [ * | . . | + + + ]            ^ | 
|  | //         ^^^   ^^^^^              | | 
|  | //        dy/dp  dy/dq            [ * | 0 0 | 1 0 0 ] --- q[0] | 
|  | //                                [ * | 0 0 | 0 1 0 ] --- q[1] | 
|  | //                                [ * | 0 0 | 0 0 1 ] --- q[2] | 
|  | //                                            --+-- | 
|  | //                                              | | 
|  | //          Dual components for q --------------+ | 
|  | // | 
|  | // where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+" | 
|  | // of y in the above diagram are the derivatives of y with respect to p and q | 
|  | // respectively. This is how autodiff works for functors taking multiple vector | 
|  | // valued arguments (up to 6). | 
|  | // | 
|  | // Jacobian null pointers (nullptr) | 
|  | // -------------------------------- | 
|  | // In general, the functions below will accept nullptr for all or some of the | 
|  | // Jacobian parameters, meaning that those Jacobians will not be computed. | 
|  |  | 
|  | #ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_ | 
|  | #define CERES_PUBLIC_INTERNAL_AUTODIFF_H_ | 
|  |  | 
|  | #include <array> | 
|  | #include <cstddef> | 
|  | #include <utility> | 
|  |  | 
|  | #include "ceres/internal/array_selector.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/fixed_array.h" | 
|  | #include "ceres/internal/parameter_dims.h" | 
|  | #include "ceres/internal/variadic_evaluate.h" | 
|  | #include "ceres/jet.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | // If the number of parameters exceeds this values, the corresponding jets are | 
|  | // placed on the heap. This will reduce performance by a factor of 2-5 on | 
|  | // current compilers. | 
|  | #ifndef CERES_AUTODIFF_MAX_PARAMETERS_ON_STACK | 
|  | #define CERES_AUTODIFF_MAX_PARAMETERS_ON_STACK 50 | 
|  | #endif | 
|  |  | 
|  | #ifndef CERES_AUTODIFF_MAX_RESIDUALS_ON_STACK | 
|  | #define CERES_AUTODIFF_MAX_RESIDUALS_ON_STACK 20 | 
|  | #endif | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | // Extends src by a 1st order perturbation for every dimension and puts it in | 
|  | // dst. The size of src is N. Since this is also used for perturbations in | 
|  | // blocked arrays, offset is used to shift which part of the jet the | 
|  | // perturbation occurs. This is used to set up the extended x augmented by an | 
|  | // identity matrix. The JetT type should be a Jet type, and T should be a | 
|  | // numeric type (e.g. double). For example, | 
|  | // | 
|  | //             0   1 2   3 4 5   6 7 8 | 
|  | //   dst[0]  [ * | . . | 1 0 0 | . . . ] | 
|  | //   dst[1]  [ * | . . | 0 1 0 | . . . ] | 
|  | //   dst[2]  [ * | . . | 0 0 1 | . . . ] | 
|  | // | 
|  | // is what would get put in dst if N was 3, offset was 3, and the jet type JetT | 
|  | // was 8-dimensional. | 
|  | template <int j, int N, int Offset, typename T, typename JetT> | 
|  | struct Make1stOrderPerturbation { | 
|  | public: | 
|  | inline static void Apply(const T* src, JetT* dst) { | 
|  | if (j == 0) { | 
|  | DCHECK(src); | 
|  | DCHECK(dst); | 
|  | } | 
|  | dst[j] = JetT(src[j], j + Offset); | 
|  | Make1stOrderPerturbation<j + 1, N, Offset, T, JetT>::Apply(src, dst); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <int N, int Offset, typename T, typename JetT> | 
|  | struct Make1stOrderPerturbation<N, N, Offset, T, JetT> { | 
|  | public: | 
|  | static void Apply(const T* /* NOT USED */, JetT* /* NOT USED */) {} | 
|  | }; | 
|  |  | 
|  | // Calls Make1stOrderPerturbation for every parameter block. | 
|  | // | 
|  | // Example: | 
|  | // If one having three parameter blocks with dimensions (3, 2, 4), the call | 
|  | // Make1stOrderPerturbations<integer_sequence<3, 2, 4>::Apply(params, x); | 
|  | // will result in the following calls to Make1stOrderPerturbation: | 
|  | // Make1stOrderPerturbation<0, 3, 0>::Apply(params[0], x + 0); | 
|  | // Make1stOrderPerturbation<0, 2, 3>::Apply(params[1], x + 3); | 
|  | // Make1stOrderPerturbation<0, 4, 5>::Apply(params[2], x + 5); | 
|  | template <typename Seq, int ParameterIdx = 0, int Offset = 0> | 
|  | struct Make1stOrderPerturbations; | 
|  |  | 
|  | template <int N, int... Ns, int ParameterIdx, int Offset> | 
|  | struct Make1stOrderPerturbations<std::integer_sequence<int, N, Ns...>, | 
|  | ParameterIdx, | 
|  | Offset> { | 
|  | template <typename T, typename JetT> | 
|  | inline static void Apply(T const* const* parameters, JetT* x) { | 
|  | Make1stOrderPerturbation<0, N, Offset, T, JetT>::Apply( | 
|  | parameters[ParameterIdx], x + Offset); | 
|  | Make1stOrderPerturbations<std::integer_sequence<int, Ns...>, | 
|  | ParameterIdx + 1, | 
|  | Offset + N>::Apply(parameters, x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // End of 'recursion'. Nothing more to do. | 
|  | template <int ParameterIdx, int Total> | 
|  | struct Make1stOrderPerturbations<std::integer_sequence<int>, | 
|  | ParameterIdx, | 
|  | Total> { | 
|  | template <typename T, typename JetT> | 
|  | static void Apply(T const* const* /* NOT USED */, JetT* /* NOT USED */) {} | 
|  | }; | 
|  |  | 
|  | // Takes the 0th order part of src, assumed to be a Jet type, and puts it in | 
|  | // dst. This is used to pick out the "vector" part of the extended y. | 
|  | template <typename JetT, typename T> | 
|  | inline void Take0thOrderPart(int M, const JetT* src, T dst) { | 
|  | DCHECK(src); | 
|  | for (int i = 0; i < M; ++i) { | 
|  | dst[i] = src[i].a; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Takes N 1st order parts, starting at index N0, and puts them in the M x N | 
|  | // matrix 'dst'. This is used to pick out the "matrix" parts of the extended y. | 
|  | template <int N0, int N, typename JetT, typename T> | 
|  | inline void Take1stOrderPart(const int M, const JetT* src, T* dst) { | 
|  | DCHECK(src); | 
|  | DCHECK(dst); | 
|  | for (int i = 0; i < M; ++i) { | 
|  | Eigen::Map<Eigen::Matrix<T, N, 1>>(dst + N * i, N) = | 
|  | src[i].v.template segment<N>(N0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calls Take1stOrderPart for every parameter block. | 
|  | // | 
|  | // Example: | 
|  | // If one having three parameter blocks with dimensions (3, 2, 4), the call | 
|  | // Take1stOrderParts<integer_sequence<3, 2, 4>::Apply(num_outputs, | 
|  | //                                                    output, | 
|  | //                                                    jacobians); | 
|  | // will result in the following calls to Take1stOrderPart: | 
|  | // if (jacobians[0]) { | 
|  | //   Take1stOrderPart<0, 3>(num_outputs, output, jacobians[0]); | 
|  | // } | 
|  | // if (jacobians[1]) { | 
|  | //   Take1stOrderPart<3, 2>(num_outputs, output, jacobians[1]); | 
|  | // } | 
|  | // if (jacobians[2]) { | 
|  | //   Take1stOrderPart<5, 4>(num_outputs, output, jacobians[2]); | 
|  | // } | 
|  | template <typename Seq, int ParameterIdx = 0, int Offset = 0> | 
|  | struct Take1stOrderParts; | 
|  |  | 
|  | template <int N, int... Ns, int ParameterIdx, int Offset> | 
|  | struct Take1stOrderParts<std::integer_sequence<int, N, Ns...>, | 
|  | ParameterIdx, | 
|  | Offset> { | 
|  | template <typename JetT, typename T> | 
|  | inline static void Apply(int num_outputs, JetT* output, T** jacobians) { | 
|  | if (jacobians[ParameterIdx]) { | 
|  | Take1stOrderPart<Offset, N>(num_outputs, output, jacobians[ParameterIdx]); | 
|  | } | 
|  | Take1stOrderParts<std::integer_sequence<int, Ns...>, | 
|  | ParameterIdx + 1, | 
|  | Offset + N>::Apply(num_outputs, output, jacobians); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // End of 'recursion'. Nothing more to do. | 
|  | template <int ParameterIdx, int Offset> | 
|  | struct Take1stOrderParts<std::integer_sequence<int>, ParameterIdx, Offset> { | 
|  | template <typename T, typename JetT> | 
|  | static void Apply(int /* NOT USED*/, | 
|  | JetT* /* NOT USED*/, | 
|  | T** /* NOT USED */) {} | 
|  | }; | 
|  |  | 
|  | template <int kNumResiduals, | 
|  | typename ParameterDims, | 
|  | typename Functor, | 
|  | typename T> | 
|  | inline bool AutoDifferentiate(const Functor& functor, | 
|  | T const* const* parameters, | 
|  | int dynamic_num_outputs, | 
|  | T* function_value, | 
|  | T** jacobians) { | 
|  | using JetT = Jet<T, ParameterDims::kNumParameters>; | 
|  | using Parameters = typename ParameterDims::Parameters; | 
|  |  | 
|  | if (kNumResiduals != DYNAMIC) { | 
|  | DCHECK_EQ(kNumResiduals, dynamic_num_outputs); | 
|  | } | 
|  |  | 
|  | ArraySelector<JetT, | 
|  | ParameterDims::kNumParameters, | 
|  | CERES_AUTODIFF_MAX_PARAMETERS_ON_STACK> | 
|  | parameters_as_jets(ParameterDims::kNumParameters); | 
|  |  | 
|  | // Pointers to the beginning of each parameter block | 
|  | std::array<JetT*, ParameterDims::kNumParameterBlocks> unpacked_parameters = | 
|  | ParameterDims::GetUnpackedParameters(parameters_as_jets.data()); | 
|  |  | 
|  | // If the number of residuals is fixed, we use the template argument as the | 
|  | // number of outputs. Otherwise we use the num_outputs parameter. Note: The | 
|  | // ?-operator here is compile-time evaluated, therefore num_outputs is also | 
|  | // a compile-time constant for functors with fixed residuals. | 
|  | const int num_outputs = | 
|  | kNumResiduals == DYNAMIC ? dynamic_num_outputs : kNumResiduals; | 
|  | DCHECK_GT(num_outputs, 0); | 
|  |  | 
|  | ArraySelector<JetT, kNumResiduals, CERES_AUTODIFF_MAX_RESIDUALS_ON_STACK> | 
|  | residuals_as_jets(num_outputs); | 
|  |  | 
|  | // Invalidate the output Jets, so that we can detect if the user | 
|  | // did not assign values to all of them. | 
|  | for (int i = 0; i < num_outputs; ++i) { | 
|  | residuals_as_jets[i].a = kImpossibleValue; | 
|  | residuals_as_jets[i].v.setConstant(kImpossibleValue); | 
|  | } | 
|  |  | 
|  | Make1stOrderPerturbations<Parameters>::Apply(parameters, | 
|  | parameters_as_jets.data()); | 
|  |  | 
|  | if (!VariadicEvaluate<ParameterDims>( | 
|  | functor, unpacked_parameters.data(), residuals_as_jets.data())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Take0thOrderPart(num_outputs, residuals_as_jets.data(), function_value); | 
|  | Take1stOrderParts<Parameters>::Apply( | 
|  | num_outputs, residuals_as_jets.data(), jacobians); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal | 
|  |  | 
|  | #endif  // CERES_PUBLIC_INTERNAL_AUTODIFF_H_ |