|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Authors: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include <memory> | 
|  | #include <random> | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "benchmark/benchmark.h" | 
|  | #include "ceres/block_jacobi_preconditioner.h" | 
|  | #include "ceres/block_sparse_matrix.h" | 
|  | #include "ceres/fake_bundle_adjustment_jacobian.h" | 
|  | #include "ceres/internal/config.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | constexpr int kNumCameras = 1000; | 
|  | constexpr int kNumPoints = 10000; | 
|  | constexpr int kCameraSize = 6; | 
|  | constexpr int kPointSize = 3; | 
|  | constexpr double kVisibility = 0.1; | 
|  |  | 
|  | constexpr int kNumRowBlocks = 100000; | 
|  | constexpr int kNumColBlocks = 10000; | 
|  | constexpr int kMinRowBlockSize = 1; | 
|  | constexpr int kMaxRowBlockSize = 5; | 
|  | constexpr int kMinColBlockSize = 1; | 
|  | constexpr int kMaxColBlockSize = 15; | 
|  | constexpr double kBlockDensity = 5.0 / kNumColBlocks; | 
|  |  | 
|  | static void BM_BlockSparseJacobiPreconditionerBA(benchmark::State& state) { | 
|  | std::mt19937 prng; | 
|  | auto jacobian = CreateFakeBundleAdjustmentJacobian( | 
|  | kNumCameras, kNumPoints, kCameraSize, kPointSize, kVisibility, prng); | 
|  |  | 
|  | Preconditioner::Options preconditioner_options; | 
|  | ContextImpl context; | 
|  | preconditioner_options.context = &context; | 
|  | preconditioner_options.num_threads = static_cast<int>(state.range(0)); | 
|  | context.EnsureMinimumThreads(preconditioner_options.num_threads); | 
|  | BlockSparseJacobiPreconditioner p(preconditioner_options, *jacobian); | 
|  |  | 
|  | Vector d = Vector::Ones(jacobian->num_cols()); | 
|  | for (auto _ : state) { | 
|  | p.Update(*jacobian, d.data()); | 
|  | } | 
|  | } | 
|  |  | 
|  | BENCHMARK(BM_BlockSparseJacobiPreconditionerBA) | 
|  | ->Arg(1) | 
|  | ->Arg(2) | 
|  | ->Arg(4) | 
|  | ->Arg(8) | 
|  | ->Arg(16); | 
|  |  | 
|  | static void BM_BlockCRSJacobiPreconditionerBA(benchmark::State& state) { | 
|  | std::mt19937 prng; | 
|  | auto jacobian = CreateFakeBundleAdjustmentJacobian( | 
|  | kNumCameras, kNumPoints, kCameraSize, kPointSize, kVisibility, prng); | 
|  |  | 
|  | auto jacobian_crs = jacobian->ToCompressedRowSparseMatrix(); | 
|  | Preconditioner::Options preconditioner_options; | 
|  | ContextImpl context; | 
|  | preconditioner_options.context = &context; | 
|  | preconditioner_options.num_threads = static_cast<int>(state.range(0)); | 
|  | context.EnsureMinimumThreads(preconditioner_options.num_threads); | 
|  | BlockCRSJacobiPreconditioner p(preconditioner_options, *jacobian_crs); | 
|  |  | 
|  | Vector d = Vector::Ones(jacobian_crs->num_cols()); | 
|  | for (auto _ : state) { | 
|  | p.Update(*jacobian_crs, d.data()); | 
|  | } | 
|  | } | 
|  |  | 
|  | BENCHMARK(BM_BlockCRSJacobiPreconditionerBA) | 
|  | ->Arg(1) | 
|  | ->Arg(2) | 
|  | ->Arg(4) | 
|  | ->Arg(8) | 
|  | ->Arg(16); | 
|  |  | 
|  | static void BM_BlockSparseJacobiPreconditionerUnstructured( | 
|  | benchmark::State& state) { | 
|  | BlockSparseMatrix::RandomMatrixOptions options; | 
|  | options.num_row_blocks = kNumRowBlocks; | 
|  | options.num_col_blocks = kNumColBlocks; | 
|  | options.min_row_block_size = kMinRowBlockSize; | 
|  | options.min_col_block_size = kMinColBlockSize; | 
|  | options.max_row_block_size = kMaxRowBlockSize; | 
|  | options.max_col_block_size = kMaxColBlockSize; | 
|  | options.block_density = kBlockDensity; | 
|  | std::mt19937 prng; | 
|  |  | 
|  | auto jacobian = BlockSparseMatrix::CreateRandomMatrix(options, prng); | 
|  | Preconditioner::Options preconditioner_options; | 
|  | ContextImpl context; | 
|  | preconditioner_options.context = &context; | 
|  | preconditioner_options.num_threads = static_cast<int>(state.range(0)); | 
|  | context.EnsureMinimumThreads(preconditioner_options.num_threads); | 
|  | BlockSparseJacobiPreconditioner p(preconditioner_options, *jacobian); | 
|  |  | 
|  | Vector d = Vector::Ones(jacobian->num_cols()); | 
|  | for (auto _ : state) { | 
|  | p.Update(*jacobian, d.data()); | 
|  | } | 
|  | } | 
|  |  | 
|  | BENCHMARK(BM_BlockSparseJacobiPreconditionerUnstructured) | 
|  | ->Arg(1) | 
|  | ->Arg(2) | 
|  | ->Arg(4) | 
|  | ->Arg(8) | 
|  | ->Arg(16); | 
|  |  | 
|  | static void BM_BlockCRSJacobiPreconditionerUnstructured( | 
|  | benchmark::State& state) { | 
|  | BlockSparseMatrix::RandomMatrixOptions options; | 
|  | options.num_row_blocks = kNumRowBlocks; | 
|  | options.num_col_blocks = kNumColBlocks; | 
|  | options.min_row_block_size = kMinRowBlockSize; | 
|  | options.min_col_block_size = kMinColBlockSize; | 
|  | options.max_row_block_size = kMaxRowBlockSize; | 
|  | options.max_col_block_size = kMaxColBlockSize; | 
|  | options.block_density = kBlockDensity; | 
|  | std::mt19937 prng; | 
|  |  | 
|  | auto jacobian = BlockSparseMatrix::CreateRandomMatrix(options, prng); | 
|  | auto jacobian_crs = jacobian->ToCompressedRowSparseMatrix(); | 
|  | Preconditioner::Options preconditioner_options; | 
|  | ContextImpl context; | 
|  | preconditioner_options.context = &context; | 
|  | preconditioner_options.num_threads = static_cast<int>(state.range(0)); | 
|  | context.EnsureMinimumThreads(preconditioner_options.num_threads); | 
|  | BlockCRSJacobiPreconditioner p(preconditioner_options, *jacobian_crs); | 
|  |  | 
|  | Vector d = Vector::Ones(jacobian_crs->num_cols()); | 
|  | for (auto _ : state) { | 
|  | p.Update(*jacobian_crs, d.data()); | 
|  | } | 
|  | } | 
|  | BENCHMARK(BM_BlockCRSJacobiPreconditionerUnstructured) | 
|  | ->Arg(1) | 
|  | ->Arg(2) | 
|  | ->Arg(4) | 
|  | ->Arg(8) | 
|  | ->Arg(16); | 
|  |  | 
|  | }  // namespace ceres::internal | 
|  |  | 
|  | BENCHMARK_MAIN(); |