|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) | 
|  |  | 
|  | #include "ceres/cuda_block_sparse_crs_view.h" | 
|  |  | 
|  | #ifndef CERES_NO_CUDA | 
|  |  | 
|  | #include "ceres/cuda_kernels_bsm_to_crs.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | CudaBlockSparseCRSView::CudaBlockSparseCRSView(const BlockSparseMatrix& bsm, | 
|  | ContextImpl* context) | 
|  | : context_(context) { | 
|  | block_structure_ = std::make_unique<CudaBlockSparseStructure>( | 
|  | *bsm.block_structure(), context); | 
|  | CudaBuffer<int32_t> rows(context, bsm.num_rows() + 1); | 
|  | CudaBuffer<int32_t> cols(context, bsm.num_nonzeros()); | 
|  | FillCRSStructure(block_structure_->num_row_blocks(), | 
|  | bsm.num_rows(), | 
|  | block_structure_->first_cell_in_row_block(), | 
|  | block_structure_->cells(), | 
|  | block_structure_->row_blocks(), | 
|  | block_structure_->col_blocks(), | 
|  | rows.data(), | 
|  | cols.data(), | 
|  | context->DefaultStream(), | 
|  | context->is_cuda_memory_pools_supported_); | 
|  | is_crs_compatible_ = block_structure_->IsCrsCompatible(); | 
|  | // if matrix is crs-compatible - we can drop block-structure and don't need | 
|  | // streamed_buffer_ | 
|  | if (is_crs_compatible_) { | 
|  | VLOG(3) << "Block-sparse matrix is compatible with CRS, discarding " | 
|  | "block-structure"; | 
|  | block_structure_ = nullptr; | 
|  | } else { | 
|  | streamed_buffer_ = std::make_unique<CudaStreamedBuffer<double>>( | 
|  | context_, kMaxTemporaryArraySize); | 
|  | } | 
|  | crs_matrix_ = std::make_unique<CudaSparseMatrix>( | 
|  | bsm.num_cols(), std::move(rows), std::move(cols), context); | 
|  | UpdateValues(bsm); | 
|  | } | 
|  |  | 
|  | void CudaBlockSparseCRSView::UpdateValues(const BlockSparseMatrix& bsm) { | 
|  | if (is_crs_compatible_) { | 
|  | // Values of CRS-compatible matrices can be copied as-is | 
|  | CHECK_EQ(cudaSuccess, | 
|  | cudaMemcpyAsync(crs_matrix_->mutable_values(), | 
|  | bsm.values(), | 
|  | bsm.num_nonzeros() * sizeof(double), | 
|  | cudaMemcpyHostToDevice, | 
|  | context_->DefaultStream())); | 
|  | return; | 
|  | } | 
|  | streamed_buffer_->CopyToGpu( | 
|  | bsm.values(), | 
|  | bsm.num_nonzeros(), | 
|  | [bs = block_structure_.get(), crs = crs_matrix_.get()]( | 
|  | const double* values, int num_values, int offset, auto stream) { | 
|  | PermuteToCRS(offset, | 
|  | num_values, | 
|  | bs->num_row_blocks(), | 
|  | bs->first_cell_in_row_block(), | 
|  | bs->cells(), | 
|  | bs->row_blocks(), | 
|  | bs->col_blocks(), | 
|  | crs->rows(), | 
|  | values, | 
|  | crs->mutable_values(), | 
|  | stream); | 
|  | }); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal | 
|  | #endif  // CERES_NO_CUDA |