|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) | 
|  | // | 
|  |  | 
|  | #ifndef CERES_INTERNAL_CUDA_PARTITIONED_BLOCK_SPARSE_CRS_VIEW_H_ | 
|  | #define CERES_INTERNAL_CUDA_PARTITIONED_BLOCK_SPARSE_CRS_VIEW_H_ | 
|  |  | 
|  | #include "ceres/internal/config.h" | 
|  |  | 
|  | #ifndef CERES_NO_CUDA | 
|  |  | 
|  | #include <memory> | 
|  |  | 
|  | #include "ceres/block_sparse_matrix.h" | 
|  | #include "ceres/cuda_block_structure.h" | 
|  | #include "ceres/cuda_buffer.h" | 
|  | #include "ceres/cuda_sparse_matrix.h" | 
|  | #include "ceres/cuda_streamed_buffer.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  | // We use cuSPARSE library for SpMV operations. However, it does not support | 
|  | // neither block-sparse format with varying size of the blocks nor | 
|  | // submatrix-vector products. Thus, we perform the following operations in order | 
|  | // to compute products of partitioned block-sparse matrices and dense vectors on | 
|  | // gpu: | 
|  | //  - Once per block-sparse structure update: | 
|  | //    - Compute CRS structures of left and right submatrices from block-sparse | 
|  | //    structure | 
|  | //    - Check if values of F sub-matrix can be copied without permutation | 
|  | //    matrices | 
|  | //  - Once per block-sparse values update: | 
|  | //    - Copy values of E sub-matrix | 
|  | //    - Permute or copy values of F sub-matrix | 
|  | // | 
|  | // It is assumed that cells of block-sparse matrix are laid out sequentially in | 
|  | // both of sub-matrices and there is exactly one cell in row-block of E | 
|  | // sub-matrix in the first num_row_blocks_e_ row blocks, and no cells in E | 
|  | // sub-matrix below num_row_blocks_e_ row blocks. | 
|  | // | 
|  | // This class avoids storing both CRS and block-sparse values in GPU memory. | 
|  | // Instead, block-sparse values are transferred to gpu memory as a disjoint set | 
|  | // of small continuous segments with simultaneous permutation of the values into | 
|  | // correct order using block-structure. | 
|  | class CERES_NO_EXPORT CudaPartitionedBlockSparseCRSView { | 
|  | public: | 
|  | // Initializes internal CRS matrix and block-sparse structure on GPU side | 
|  | // values. The following objects are stored in gpu memory for the whole | 
|  | // lifetime of the object | 
|  | //  - matrix_e_: left CRS submatrix | 
|  | //  - matrix_f_: right CRS submatrix | 
|  | //  - block_structure_: copy of block-sparse structure on GPU | 
|  | //  - streamed_buffer_: helper for value updating | 
|  | CudaPartitionedBlockSparseCRSView(const BlockSparseMatrix& bsm, | 
|  | const int num_col_blocks_e, | 
|  | ContextImpl* context); | 
|  |  | 
|  | // Update values of CRS submatrices using values of block-sparse matrix. | 
|  | // Assumes that bsm has the same block-sparse structure as matrix that was | 
|  | // used for construction. | 
|  | void UpdateValues(const BlockSparseMatrix& bsm); | 
|  |  | 
|  | const CudaSparseMatrix* matrix_e() const { return matrix_e_.get(); } | 
|  | const CudaSparseMatrix* matrix_f() const { return matrix_f_.get(); } | 
|  | CudaSparseMatrix* mutable_matrix_e() { return matrix_e_.get(); } | 
|  | CudaSparseMatrix* mutable_matrix_f() { return matrix_f_.get(); } | 
|  |  | 
|  | private: | 
|  | // Value permutation kernel performs a single element-wise operation per | 
|  | // thread, thus performing permutation in blocks of 8 megabytes of | 
|  | // block-sparse  values seems reasonable | 
|  | static constexpr int kMaxTemporaryArraySize = 1 * 1024 * 1024; | 
|  | std::unique_ptr<CudaSparseMatrix> matrix_e_; | 
|  | std::unique_ptr<CudaSparseMatrix> matrix_f_; | 
|  | std::unique_ptr<CudaStreamedBuffer<double>> streamed_buffer_; | 
|  | std::unique_ptr<CudaBlockSparseStructure> block_structure_; | 
|  | bool f_is_crs_compatible_; | 
|  | int num_row_blocks_e_; | 
|  | ContextImpl* context_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres::internal | 
|  |  | 
|  | #endif  // CERES_NO_CUDA | 
|  | #endif  // CERES_INTERNAL_CUDA_PARTITIONED_BLOCK_SPARSE_CRS_VIEW_H_ |