| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: joydeepb@cs.utexas.edu (Joydeep Biswas) | 
 | // | 
 | // A simple CUDA vector class. | 
 |  | 
 | // This include must come before any #ifndef check on Ceres compile options. | 
 | // clang-format off | 
 | #include "ceres/internal/config.h" | 
 | // clang-format on | 
 |  | 
 | #include <math.h> | 
 |  | 
 | #include "ceres/context_impl.h" | 
 | #include "ceres/internal/export.h" | 
 | #include "ceres/types.h" | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 |  | 
 | #include "ceres/cuda_buffer.h" | 
 | #include "ceres/cuda_kernels_vector_ops.h" | 
 | #include "ceres/cuda_vector.h" | 
 | #include "cublas_v2.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | CudaVector::CudaVector(ContextImpl* context, int size) | 
 |     : context_(context), data_(context, size) { | 
 |   DCHECK_NE(context, nullptr); | 
 |   DCHECK(context->IsCudaInitialized()); | 
 |   Resize(size); | 
 | } | 
 |  | 
 | CudaVector::CudaVector(CudaVector&& other) | 
 |     : num_rows_(other.num_rows_), | 
 |       context_(other.context_), | 
 |       data_(std::move(other.data_)), | 
 |       descr_(other.descr_) { | 
 |   other.num_rows_ = 0; | 
 |   other.descr_ = nullptr; | 
 | } | 
 |  | 
 | CudaVector& CudaVector::operator=(const CudaVector& other) { | 
 |   if (this != &other) { | 
 |     Resize(other.num_rows()); | 
 |     data_.CopyFromGPUArray(other.data_.data(), num_rows_); | 
 |   } | 
 |   return *this; | 
 | } | 
 |  | 
 | void CudaVector::DestroyDescriptor() { | 
 |   if (descr_ != nullptr) { | 
 |     CHECK_EQ(cusparseDestroyDnVec(descr_), CUSPARSE_STATUS_SUCCESS); | 
 |     descr_ = nullptr; | 
 |   } | 
 | } | 
 |  | 
 | CudaVector::~CudaVector() { DestroyDescriptor(); } | 
 |  | 
 | void CudaVector::Resize(int size) { | 
 |   data_.Reserve(size); | 
 |   num_rows_ = size; | 
 |   DestroyDescriptor(); | 
 |   CHECK_EQ(cusparseCreateDnVec(&descr_, num_rows_, data_.data(), CUDA_R_64F), | 
 |            CUSPARSE_STATUS_SUCCESS); | 
 | } | 
 |  | 
 | double CudaVector::Dot(const CudaVector& x) const { | 
 |   double result = 0; | 
 |   CHECK_EQ(cublasDdot(context_->cublas_handle_, | 
 |                       num_rows_, | 
 |                       data_.data(), | 
 |                       1, | 
 |                       x.data(), | 
 |                       1, | 
 |                       &result), | 
 |            CUBLAS_STATUS_SUCCESS) | 
 |       << "CuBLAS cublasDdot failed."; | 
 |   return result; | 
 | } | 
 |  | 
 | double CudaVector::Norm() const { | 
 |   double result = 0; | 
 |   CHECK_EQ(cublasDnrm2( | 
 |                context_->cublas_handle_, num_rows_, data_.data(), 1, &result), | 
 |            CUBLAS_STATUS_SUCCESS) | 
 |       << "CuBLAS cublasDnrm2 failed."; | 
 |   return result; | 
 | } | 
 |  | 
 | void CudaVector::CopyFromCpu(const double* x) { | 
 |   data_.CopyFromCpu(x, num_rows_); | 
 | } | 
 |  | 
 | void CudaVector::CopyFromCpu(const Vector& x) { | 
 |   if (x.rows() != num_rows_) { | 
 |     Resize(x.rows()); | 
 |   } | 
 |   CopyFromCpu(x.data()); | 
 | } | 
 |  | 
 | void CudaVector::CopyTo(Vector* x) const { | 
 |   CHECK(x != nullptr); | 
 |   x->resize(num_rows_); | 
 |   data_.CopyToCpu(x->data(), num_rows_); | 
 | } | 
 |  | 
 | void CudaVector::CopyTo(double* x) const { | 
 |   CHECK(x != nullptr); | 
 |   data_.CopyToCpu(x, num_rows_); | 
 | } | 
 |  | 
 | void CudaVector::SetZero() { | 
 |   // Allow empty vector to be zeroed | 
 |   if (num_rows_ == 0) return; | 
 |   CHECK(data_.data() != nullptr); | 
 |   CudaSetZeroFP64(data_.data(), num_rows_, context_->DefaultStream()); | 
 | } | 
 |  | 
 | void CudaVector::Axpby(double a, const CudaVector& x, double b) { | 
 |   if (&x == this) { | 
 |     Scale(a + b); | 
 |     return; | 
 |   } | 
 |   CHECK_EQ(num_rows_, x.num_rows_); | 
 |   if (b != 1.0) { | 
 |     // First scale y by b. | 
 |     CHECK_EQ( | 
 |         cublasDscal(context_->cublas_handle_, num_rows_, &b, data_.data(), 1), | 
 |         CUBLAS_STATUS_SUCCESS) | 
 |         << "CuBLAS cublasDscal failed."; | 
 |   } | 
 |   // Then add a * x to y. | 
 |   CHECK_EQ(cublasDaxpy(context_->cublas_handle_, | 
 |                        num_rows_, | 
 |                        &a, | 
 |                        x.data(), | 
 |                        1, | 
 |                        data_.data(), | 
 |                        1), | 
 |            CUBLAS_STATUS_SUCCESS) | 
 |       << "CuBLAS cublasDaxpy failed."; | 
 | } | 
 |  | 
 | void CudaVector::DtDxpy(const CudaVector& D, const CudaVector& x) { | 
 |   CudaDtDxpy( | 
 |       data_.data(), D.data(), x.data(), num_rows_, context_->DefaultStream()); | 
 | } | 
 |  | 
 | void CudaVector::Scale(double s) { | 
 |   CHECK_EQ( | 
 |       cublasDscal(context_->cublas_handle_, num_rows_, &s, data_.data(), 1), | 
 |       CUBLAS_STATUS_SUCCESS) | 
 |       << "CuBLAS cublasDscal failed."; | 
 | } | 
 |  | 
 | }  // namespace ceres::internal | 
 |  | 
 | #endif  // CERES_NO_CUDA |