| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/trust_region_preprocessor.h" | 
 |  | 
 | #include <numeric> | 
 | #include <string> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/callbacks.h" | 
 | #include "ceres/context_impl.h" | 
 | #include "ceres/evaluator.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/minimizer.h" | 
 | #include "ceres/parameter_block.h" | 
 | #include "ceres/preconditioner.h" | 
 | #include "ceres/preprocessor.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/program.h" | 
 | #include "ceres/reorder_program.h" | 
 | #include "ceres/suitesparse.h" | 
 | #include "ceres/trust_region_strategy.h" | 
 | #include "ceres/wall_time.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | namespace { | 
 |  | 
 | std::shared_ptr<ParameterBlockOrdering> CreateDefaultLinearSolverOrdering( | 
 |     const Program& program) { | 
 |   std::shared_ptr<ParameterBlockOrdering> ordering = | 
 |       std::make_shared<ParameterBlockOrdering>(); | 
 |   const std::vector<ParameterBlock*>& parameter_blocks = | 
 |       program.parameter_blocks(); | 
 |   for (auto* parameter_block : parameter_blocks) { | 
 |     ordering->AddElementToGroup( | 
 |         const_cast<double*>(parameter_block->user_state()), 0); | 
 |   } | 
 |   return ordering; | 
 | } | 
 |  | 
 | // Check if all the user supplied values in the parameter blocks are | 
 | // sane or not, and if the program is feasible or not. | 
 | bool IsProgramValid(const Program& program, std::string* error) { | 
 |   return (program.ParameterBlocksAreFinite(error) && program.IsFeasible(error)); | 
 | } | 
 |  | 
 | void AlternateLinearSolverAndPreconditionerForSchurTypeLinearSolver( | 
 |     Solver::Options* options) { | 
 |   if (!IsSchurType(options->linear_solver_type)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   const LinearSolverType linear_solver_type_given = options->linear_solver_type; | 
 |   const PreconditionerType preconditioner_type_given = | 
 |       options->preconditioner_type; | 
 |   options->linear_solver_type = | 
 |       LinearSolver::LinearSolverForZeroEBlocks(linear_solver_type_given); | 
 |  | 
 |   std::string message; | 
 |   if (linear_solver_type_given == ITERATIVE_SCHUR) { | 
 |     options->preconditioner_type = | 
 |         Preconditioner::PreconditionerForZeroEBlocks(preconditioner_type_given); | 
 |  | 
 |     message = | 
 |         StringPrintf("No E blocks. Switching from %s(%s) to %s(%s).", | 
 |                      LinearSolverTypeToString(linear_solver_type_given), | 
 |                      PreconditionerTypeToString(preconditioner_type_given), | 
 |                      LinearSolverTypeToString(options->linear_solver_type), | 
 |                      PreconditionerTypeToString(options->preconditioner_type)); | 
 |   } else { | 
 |     message = | 
 |         StringPrintf("No E blocks. Switching from %s to %s.", | 
 |                      LinearSolverTypeToString(linear_solver_type_given), | 
 |                      LinearSolverTypeToString(options->linear_solver_type)); | 
 |   } | 
 |   if (options->logging_type != SILENT) { | 
 |     VLOG(1) << message; | 
 |   } | 
 | } | 
 |  | 
 | // Reorder the program to reduce fill-in and increase cache coherency. | 
 | bool ReorderProgram(PreprocessedProblem* pp) { | 
 |   const Solver::Options& options = pp->options; | 
 |   if (IsSchurType(options.linear_solver_type)) { | 
 |     return ReorderProgramForSchurTypeLinearSolver( | 
 |         options.linear_solver_type, | 
 |         options.sparse_linear_algebra_library_type, | 
 |         options.linear_solver_ordering_type, | 
 |         pp->problem->parameter_map(), | 
 |         options.linear_solver_ordering.get(), | 
 |         pp->reduced_program.get(), | 
 |         &pp->error); | 
 |   } | 
 |  | 
 |   if (options.linear_solver_type == SPARSE_NORMAL_CHOLESKY && | 
 |       !options.dynamic_sparsity) { | 
 |     return ReorderProgramForSparseCholesky( | 
 |         options.sparse_linear_algebra_library_type, | 
 |         options.linear_solver_ordering_type, | 
 |         *options.linear_solver_ordering, | 
 |         0, /* use all the rows of the jacobian */ | 
 |         pp->reduced_program.get(), | 
 |         &pp->error); | 
 |   } | 
 |  | 
 |   if (options.linear_solver_type == CGNR && | 
 |       options.preconditioner_type == SUBSET) { | 
 |     pp->linear_solver_options.subset_preconditioner_start_row_block = | 
 |         ReorderResidualBlocksByPartition( | 
 |             options.residual_blocks_for_subset_preconditioner, | 
 |             pp->reduced_program.get()); | 
 |  | 
 |     return ReorderProgramForSparseCholesky( | 
 |         options.sparse_linear_algebra_library_type, | 
 |         options.linear_solver_ordering_type, | 
 |         *options.linear_solver_ordering, | 
 |         pp->linear_solver_options.subset_preconditioner_start_row_block, | 
 |         pp->reduced_program.get(), | 
 |         &pp->error); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Configure and create a linear solver object. In doing so, if a | 
 | // sparse direct factorization based linear solver is being used, then | 
 | // find a fill reducing ordering and reorder the program as needed | 
 | // too. | 
 | bool SetupLinearSolver(PreprocessedProblem* pp) { | 
 |   Solver::Options& options = pp->options; | 
 |   pp->linear_solver_options = LinearSolver::Options(); | 
 |  | 
 |   if (!options.linear_solver_ordering) { | 
 |     // If the user has not supplied a linear solver ordering, then we | 
 |     // assume that they are giving all the freedom to us in choosing | 
 |     // the best possible ordering. This intent can be indicated by | 
 |     // putting all the parameter blocks in the same elimination group. | 
 |     options.linear_solver_ordering = | 
 |         CreateDefaultLinearSolverOrdering(*pp->reduced_program); | 
 |   } else { | 
 |     // If the user supplied an ordering, then check if the first | 
 |     // elimination group is still non-empty after the reduced problem | 
 |     // has been constructed. | 
 |     // | 
 |     // This is important for Schur type linear solvers, where the | 
 |     // first elimination group is special -- it needs to be an | 
 |     // independent set. | 
 |     // | 
 |     // If the first elimination group is empty, then we cannot use the | 
 |     // user's requested linear solver (and a preconditioner as the | 
 |     // case may be) so we must use a different one. | 
 |     ParameterBlockOrdering* ordering = options.linear_solver_ordering.get(); | 
 |     const int min_group_id = ordering->MinNonZeroGroup(); | 
 |     ordering->Remove(pp->removed_parameter_blocks); | 
 |     if (IsSchurType(options.linear_solver_type) && | 
 |         min_group_id != ordering->MinNonZeroGroup()) { | 
 |       AlternateLinearSolverAndPreconditionerForSchurTypeLinearSolver(&options); | 
 |     } | 
 |   } | 
 |  | 
 |   // Reorder the program to reduce fill in and improve cache coherency | 
 |   // of the Jacobian. | 
 |   if (!ReorderProgram(pp)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Configure the linear solver. | 
 |   pp->linear_solver_options.min_num_iterations = | 
 |       options.min_linear_solver_iterations; | 
 |   pp->linear_solver_options.max_num_iterations = | 
 |       options.max_linear_solver_iterations; | 
 |   pp->linear_solver_options.type = options.linear_solver_type; | 
 |   pp->linear_solver_options.preconditioner_type = options.preconditioner_type; | 
 |   pp->linear_solver_options.use_spse_initialization = | 
 |       options.use_spse_initialization; | 
 |   pp->linear_solver_options.spse_tolerance = options.spse_tolerance; | 
 |   pp->linear_solver_options.max_num_spse_iterations = | 
 |       options.max_num_spse_iterations; | 
 |   pp->linear_solver_options.visibility_clustering_type = | 
 |       options.visibility_clustering_type; | 
 |   pp->linear_solver_options.sparse_linear_algebra_library_type = | 
 |       options.sparse_linear_algebra_library_type; | 
 |  | 
 |   pp->linear_solver_options.dense_linear_algebra_library_type = | 
 |       options.dense_linear_algebra_library_type; | 
 |   pp->linear_solver_options.use_explicit_schur_complement = | 
 |       options.use_explicit_schur_complement; | 
 |   pp->linear_solver_options.dynamic_sparsity = options.dynamic_sparsity; | 
 |   pp->linear_solver_options.use_mixed_precision_solves = | 
 |       options.use_mixed_precision_solves; | 
 |   pp->linear_solver_options.max_num_refinement_iterations = | 
 |       options.max_num_refinement_iterations; | 
 |   pp->linear_solver_options.num_threads = options.num_threads; | 
 |   pp->linear_solver_options.context = pp->problem->context(); | 
 |  | 
 |   if (IsSchurType(pp->linear_solver_options.type)) { | 
 |     OrderingToGroupSizes(options.linear_solver_ordering.get(), | 
 |                          &pp->linear_solver_options.elimination_groups); | 
 |  | 
 |     // Schur type solvers expect at least two elimination groups. If | 
 |     // there is only one elimination group, then it is guaranteed that | 
 |     // this group only contains e_blocks. Thus we add a dummy | 
 |     // elimination group with zero blocks in it. | 
 |     if (pp->linear_solver_options.elimination_groups.size() == 1) { | 
 |       pp->linear_solver_options.elimination_groups.push_back(0); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!options.dynamic_sparsity && | 
 |       AreJacobianColumnsOrdered(options.linear_solver_type, | 
 |                                 options.preconditioner_type, | 
 |                                 options.sparse_linear_algebra_library_type, | 
 |                                 options.linear_solver_ordering_type)) { | 
 |     pp->linear_solver_options.ordering_type = OrderingType::NATURAL; | 
 |   } else { | 
 |     if (options.linear_solver_ordering_type == ceres::AMD) { | 
 |       pp->linear_solver_options.ordering_type = OrderingType::AMD; | 
 |     } else if (options.linear_solver_ordering_type == ceres::NESDIS) { | 
 |       pp->linear_solver_options.ordering_type = OrderingType::NESDIS; | 
 |     } else { | 
 |       LOG(FATAL) << "Congratulations you have found a bug in Ceres Solver." | 
 |                  << " Please report this to the maintainers. : " | 
 |                  << options.linear_solver_ordering_type; | 
 |     } | 
 |   } | 
 |  | 
 |   pp->linear_solver = LinearSolver::Create(pp->linear_solver_options); | 
 |   return (pp->linear_solver != nullptr); | 
 | } | 
 |  | 
 | // Configure and create the evaluator. | 
 | bool SetupEvaluator(PreprocessedProblem* pp) { | 
 |   const Solver::Options& options = pp->options; | 
 |   pp->evaluator_options = Evaluator::Options(); | 
 |   pp->evaluator_options.linear_solver_type = options.linear_solver_type; | 
 |   pp->evaluator_options.sparse_linear_algebra_library_type = | 
 |       options.sparse_linear_algebra_library_type; | 
 |   pp->evaluator_options.num_eliminate_blocks = 0; | 
 |   if (IsSchurType(options.linear_solver_type)) { | 
 |     pp->evaluator_options.num_eliminate_blocks = | 
 |         options.linear_solver_ordering->group_to_elements() | 
 |             .begin() | 
 |             ->second.size(); | 
 |   } | 
 |  | 
 |   pp->evaluator_options.num_threads = options.num_threads; | 
 |   pp->evaluator_options.dynamic_sparsity = options.dynamic_sparsity; | 
 |   pp->evaluator_options.context = pp->problem->context(); | 
 |   pp->evaluator_options.evaluation_callback = | 
 |       pp->reduced_program->mutable_evaluation_callback(); | 
 |   pp->evaluator = Evaluator::Create( | 
 |       pp->evaluator_options, pp->reduced_program.get(), &pp->error); | 
 |  | 
 |   return (pp->evaluator != nullptr); | 
 | } | 
 |  | 
 | // If the user requested inner iterations, then find an inner | 
 | // iteration ordering as needed and configure and create a | 
 | // CoordinateDescentMinimizer object to perform the inner iterations. | 
 | bool SetupInnerIterationMinimizer(PreprocessedProblem* pp) { | 
 |   Solver::Options& options = pp->options; | 
 |   if (!options.use_inner_iterations) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (pp->reduced_program->mutable_evaluation_callback()) { | 
 |     pp->error = "Inner iterations cannot be used with EvaluationCallbacks"; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // With just one parameter block, the outer iteration of the trust | 
 |   // region method and inner iterations are doing exactly the same | 
 |   // thing, and thus inner iterations are not needed. | 
 |   if (pp->reduced_program->NumParameterBlocks() == 1) { | 
 |     LOG(WARNING) << "Reduced problem only contains one parameter block." | 
 |                  << "Disabling inner iterations."; | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (options.inner_iteration_ordering != nullptr) { | 
 |     // If the user supplied an ordering, then remove the set of | 
 |     // inactive parameter blocks from it | 
 |     options.inner_iteration_ordering->Remove(pp->removed_parameter_blocks); | 
 |     if (options.inner_iteration_ordering->NumElements() == 0) { | 
 |       LOG(WARNING) << "No remaining elements in the inner iteration ordering."; | 
 |       return true; | 
 |     } | 
 |  | 
 |     // Validate the reduced ordering. | 
 |     if (!CoordinateDescentMinimizer::IsOrderingValid( | 
 |             *pp->reduced_program, | 
 |             *options.inner_iteration_ordering, | 
 |             &pp->error)) { | 
 |       return false; | 
 |     } | 
 |   } else { | 
 |     // The user did not supply an ordering, so create one. | 
 |     options.inner_iteration_ordering = | 
 |         CoordinateDescentMinimizer::CreateOrdering(*pp->reduced_program); | 
 |   } | 
 |  | 
 |   pp->inner_iteration_minimizer = | 
 |       std::make_unique<CoordinateDescentMinimizer>(pp->problem->context()); | 
 |   return pp->inner_iteration_minimizer->Init(*pp->reduced_program, | 
 |                                              pp->problem->parameter_map(), | 
 |                                              *options.inner_iteration_ordering, | 
 |                                              &pp->error); | 
 | } | 
 |  | 
 | // Configure and create a TrustRegionMinimizer object. | 
 | bool SetupMinimizerOptions(PreprocessedProblem* pp) { | 
 |   const Solver::Options& options = pp->options; | 
 |  | 
 |   SetupCommonMinimizerOptions(pp); | 
 |   pp->minimizer_options.is_constrained = | 
 |       pp->reduced_program->IsBoundsConstrained(); | 
 |   pp->minimizer_options.jacobian = pp->evaluator->CreateJacobian(); | 
 |   if (pp->minimizer_options.jacobian == nullptr) { | 
 |     pp->error = | 
 |         "Unable to create Jacobian matrix. Likely because it is too large."; | 
 |     return false; | 
 |   } | 
 |  | 
 |   pp->minimizer_options.inner_iteration_minimizer = | 
 |       pp->inner_iteration_minimizer; | 
 |  | 
 |   TrustRegionStrategy::Options strategy_options; | 
 |   strategy_options.linear_solver = pp->linear_solver.get(); | 
 |   strategy_options.initial_radius = options.initial_trust_region_radius; | 
 |   strategy_options.max_radius = options.max_trust_region_radius; | 
 |   strategy_options.min_lm_diagonal = options.min_lm_diagonal; | 
 |   strategy_options.max_lm_diagonal = options.max_lm_diagonal; | 
 |   strategy_options.trust_region_strategy_type = | 
 |       options.trust_region_strategy_type; | 
 |   strategy_options.dogleg_type = options.dogleg_type; | 
 |   strategy_options.context = pp->problem->context(); | 
 |   strategy_options.num_threads = options.num_threads; | 
 |   pp->minimizer_options.trust_region_strategy = | 
 |       TrustRegionStrategy::Create(strategy_options); | 
 |   CHECK(pp->minimizer_options.trust_region_strategy != nullptr); | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | bool TrustRegionPreprocessor::Preprocess(const Solver::Options& options, | 
 |                                          ProblemImpl* problem, | 
 |                                          PreprocessedProblem* pp) { | 
 |   CHECK(pp != nullptr); | 
 |   pp->options = options; | 
 |   ChangeNumThreadsIfNeeded(&pp->options); | 
 |  | 
 |   pp->problem = problem; | 
 |   Program* program = problem->mutable_program(); | 
 |   if (!IsProgramValid(*program, &pp->error)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   pp->reduced_program = program->CreateReducedProgram( | 
 |       &pp->removed_parameter_blocks, &pp->fixed_cost, &pp->error); | 
 |  | 
 |   if (pp->reduced_program.get() == nullptr) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (pp->reduced_program->NumParameterBlocks() == 0) { | 
 |     // The reduced problem has no parameter or residual blocks. There | 
 |     // is nothing more to do. | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (!SetupLinearSolver(pp) || !SetupEvaluator(pp) || | 
 |       !SetupInnerIterationMinimizer(pp)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   return SetupMinimizerOptions(pp); | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |