blob: 66e2390272f1ed3dd12484fdce7af973ad2e26a2 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/compressed_row_sparse_matrix.h"
#include <numeric>
#include "ceres/casts.h"
#include "ceres/crs_matrix.h"
#include "ceres/internal/eigen.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/linear_least_squares_problems.h"
#include "ceres/random.h"
#include "ceres/triplet_sparse_matrix.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "Eigen/SparseCore"
namespace ceres {
namespace internal {
using std::vector;
void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) {
EXPECT_EQ(a->num_rows(), b->num_rows());
EXPECT_EQ(a->num_cols(), b->num_cols());
int num_rows = a->num_rows();
int num_cols = a->num_cols();
for (int i = 0; i < num_cols; ++i) {
Vector x = Vector::Zero(num_cols);
x(i) = 1.0;
Vector y_a = Vector::Zero(num_rows);
Vector y_b = Vector::Zero(num_rows);
a->RightMultiply(x.data(), y_a.data());
b->RightMultiply(x.data(), y_b.data());
EXPECT_EQ((y_a - y_b).norm(), 0);
}
}
class CompressedRowSparseMatrixTest : public ::testing::Test {
protected :
virtual void SetUp() {
scoped_ptr<LinearLeastSquaresProblem> problem(
CreateLinearLeastSquaresProblemFromId(1));
CHECK_NOTNULL(problem.get());
tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));
crsm.reset(new CompressedRowSparseMatrix(*tsm));
num_rows = tsm->num_rows();
num_cols = tsm->num_cols();
vector<int>* row_blocks = crsm->mutable_row_blocks();
row_blocks->resize(num_rows);
std::fill(row_blocks->begin(), row_blocks->end(), 1);
vector<int>* col_blocks = crsm->mutable_col_blocks();
col_blocks->resize(num_cols);
std::fill(col_blocks->begin(), col_blocks->end(), 1);
// With all blocks of size 1, crsb_rows and crsb_cols are equivalent to
// rows and cols.
std::copy(crsm->rows(), crsm->rows() + crsm->num_rows() + 1,
std::back_inserter(*crsm->mutable_crsb_rows()));
std::copy(crsm->cols(), crsm->cols() + crsm->num_nonzeros(),
std::back_inserter(*crsm->mutable_crsb_cols()));
}
int num_rows;
int num_cols;
scoped_ptr<TripletSparseMatrix> tsm;
scoped_ptr<CompressedRowSparseMatrix> crsm;
};
TEST_F(CompressedRowSparseMatrixTest, RightMultiply) {
CompareMatrices(tsm.get(), crsm.get());
}
TEST_F(CompressedRowSparseMatrixTest, LeftMultiply) {
for (int i = 0; i < num_rows; ++i) {
Vector a = Vector::Zero(num_rows);
a(i) = 1.0;
Vector b1 = Vector::Zero(num_cols);
Vector b2 = Vector::Zero(num_cols);
tsm->LeftMultiply(a.data(), b1.data());
crsm->LeftMultiply(a.data(), b2.data());
EXPECT_EQ((b1 - b2).norm(), 0);
}
}
TEST_F(CompressedRowSparseMatrixTest, ColumnNorm) {
Vector b1 = Vector::Zero(num_cols);
Vector b2 = Vector::Zero(num_cols);
tsm->SquaredColumnNorm(b1.data());
crsm->SquaredColumnNorm(b2.data());
EXPECT_EQ((b1 - b2).norm(), 0);
}
TEST_F(CompressedRowSparseMatrixTest, Scale) {
Vector scale(num_cols);
for (int i = 0; i < num_cols; ++i) {
scale(i) = i + 1;
}
tsm->ScaleColumns(scale.data());
crsm->ScaleColumns(scale.data());
CompareMatrices(tsm.get(), crsm.get());
}
TEST_F(CompressedRowSparseMatrixTest, DeleteRows) {
// Clear the row and column blocks as these are purely scalar tests.
crsm->mutable_row_blocks()->clear();
crsm->mutable_col_blocks()->clear();
crsm->mutable_crsb_rows()->clear();
crsm->mutable_crsb_cols()->clear();
for (int i = 0; i < num_rows; ++i) {
tsm->Resize(num_rows - i, num_cols);
crsm->DeleteRows(crsm->num_rows() - tsm->num_rows());
CompareMatrices(tsm.get(), crsm.get());
}
}
TEST_F(CompressedRowSparseMatrixTest, AppendRows) {
// Clear the row and column blocks as these are purely scalar tests.
crsm->mutable_row_blocks()->clear();
crsm->mutable_col_blocks()->clear();
crsm->mutable_crsb_rows()->clear();
crsm->mutable_crsb_cols()->clear();
for (int i = 0; i < num_rows; ++i) {
TripletSparseMatrix tsm_appendage(*tsm);
tsm_appendage.Resize(i, num_cols);
tsm->AppendRows(tsm_appendage);
CompressedRowSparseMatrix crsm_appendage(tsm_appendage);
crsm->AppendRows(crsm_appendage);
CompareMatrices(tsm.get(), crsm.get());
}
}
TEST_F(CompressedRowSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) {
int num_diagonal_rows = crsm->num_cols();
scoped_array<double> diagonal(new double[num_diagonal_rows]);
for (int i = 0; i < num_diagonal_rows; ++i) {
diagonal[i] = i;
}
vector<int> row_and_column_blocks;
row_and_column_blocks.push_back(1);
row_and_column_blocks.push_back(2);
row_and_column_blocks.push_back(2);
const vector<int> pre_row_blocks = crsm->row_blocks();
const vector<int> pre_col_blocks = crsm->col_blocks();
const vector<int> pre_crsb_rows = crsm->crsb_rows();
const vector<int> pre_crsb_cols = crsm->crsb_cols();
scoped_ptr<CompressedRowSparseMatrix> appendage(
CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(
diagonal.get(), row_and_column_blocks));
LOG(INFO) << appendage->row_blocks().size();
crsm->AppendRows(*appendage);
const vector<int> post_row_blocks = crsm->row_blocks();
const vector<int> post_col_blocks = crsm->col_blocks();
vector<int> expected_row_blocks = pre_row_blocks;
expected_row_blocks.insert(expected_row_blocks.end(),
row_and_column_blocks.begin(),
row_and_column_blocks.end());
vector<int> expected_col_blocks = pre_col_blocks;
EXPECT_EQ(expected_row_blocks, crsm->row_blocks());
EXPECT_EQ(expected_col_blocks, crsm->col_blocks());
EXPECT_EQ(crsm->crsb_cols().size(),
pre_crsb_cols.size() + row_and_column_blocks.size());
EXPECT_EQ(crsm->crsb_rows().size(),
pre_crsb_rows.size() + row_and_column_blocks.size());
for (int i = 0; i < row_and_column_blocks.size(); ++i) {
EXPECT_EQ(crsm->crsb_rows()[i + pre_crsb_rows.size()],
pre_crsb_rows.back() + i + 1);
EXPECT_EQ(crsm->crsb_cols()[i + pre_crsb_cols.size()], i);
}
crsm->DeleteRows(num_diagonal_rows);
EXPECT_EQ(crsm->row_blocks(), pre_row_blocks);
EXPECT_EQ(crsm->col_blocks(), pre_col_blocks);
EXPECT_EQ(crsm->crsb_rows(), pre_crsb_rows);
EXPECT_EQ(crsm->crsb_cols(), pre_crsb_cols);
}
TEST_F(CompressedRowSparseMatrixTest, ToDenseMatrix) {
Matrix tsm_dense;
Matrix crsm_dense;
tsm->ToDenseMatrix(&tsm_dense);
crsm->ToDenseMatrix(&crsm_dense);
EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0);
}
TEST_F(CompressedRowSparseMatrixTest, ToCRSMatrix) {
CRSMatrix crs_matrix;
crsm->ToCRSMatrix(&crs_matrix);
EXPECT_EQ(crsm->num_rows(), crs_matrix.num_rows);
EXPECT_EQ(crsm->num_cols(), crs_matrix.num_cols);
EXPECT_EQ(crsm->num_rows() + 1, crs_matrix.rows.size());
EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.cols.size());
EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.values.size());
for (int i = 0; i < crsm->num_rows() + 1; ++i) {
EXPECT_EQ(crsm->rows()[i], crs_matrix.rows[i]);
}
for (int i = 0; i < crsm->num_nonzeros(); ++i) {
EXPECT_EQ(crsm->cols()[i], crs_matrix.cols[i]);
EXPECT_EQ(crsm->values()[i], crs_matrix.values[i]);
}
}
TEST(CompressedRowSparseMatrix, CreateBlockDiagonalMatrix) {
vector<int> blocks;
blocks.push_back(1);
blocks.push_back(2);
blocks.push_back(2);
Vector diagonal(5);
for (int i = 0; i < 5; ++i) {
diagonal(i) = i + 1;
}
scoped_ptr<CompressedRowSparseMatrix> matrix(
CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(
diagonal.data(), blocks));
EXPECT_EQ(matrix->num_rows(), 5);
EXPECT_EQ(matrix->num_cols(), 5);
EXPECT_EQ(matrix->num_nonzeros(), 9);
EXPECT_EQ(blocks, matrix->row_blocks());
EXPECT_EQ(blocks, matrix->col_blocks());
Vector x(5);
Vector y(5);
x.setOnes();
y.setZero();
matrix->RightMultiply(x.data(), y.data());
for (int i = 0; i < diagonal.size(); ++i) {
EXPECT_EQ(y[i], diagonal[i]);
}
y.setZero();
matrix->LeftMultiply(x.data(), y.data());
for (int i = 0; i < diagonal.size(); ++i) {
EXPECT_EQ(y[i], diagonal[i]);
}
Matrix dense;
matrix->ToDenseMatrix(&dense);
EXPECT_EQ((dense.diagonal() - diagonal).norm(), 0.0);
}
TEST(CompressedRowSparseMatrix, Transpose) {
// 0 1 0 2 3 0
// 4 6 7 0 0 8
// 9 10 0 11 12 0
// 13 0 14 15 9 0
// 0 16 17 0 0 0
// Block structure:
// A A A A B B
// A A A A B B
// A A A A B B
// C C C C D D
// C C C C D D
// C C C C D D
CompressedRowSparseMatrix matrix(5, 6, 30);
int* rows = matrix.mutable_rows();
int* cols = matrix.mutable_cols();
double* values = matrix.mutable_values();
matrix.mutable_row_blocks()->push_back(3);
matrix.mutable_row_blocks()->push_back(3);
matrix.mutable_col_blocks()->push_back(4);
matrix.mutable_col_blocks()->push_back(2);
matrix.mutable_crsb_rows()->push_back(0);
matrix.mutable_crsb_rows()->push_back(2);
matrix.mutable_crsb_rows()->push_back(4);
matrix.mutable_crsb_cols()->push_back(0);
matrix.mutable_crsb_cols()->push_back(1);
matrix.mutable_crsb_cols()->push_back(0);
matrix.mutable_crsb_cols()->push_back(1);
rows[0] = 0;
cols[0] = 1;
cols[1] = 3;
cols[2] = 4;
rows[1] = 3;
cols[3] = 0;
cols[4] = 1;
cols[5] = 2;
cols[6] = 5;
rows[2] = 7;
cols[7] = 0;
cols[8] = 1;
cols[9] = 3;
cols[10] = 4;
rows[3] = 11;
cols[11] = 0;
cols[12] = 2;
cols[13] = 3;
cols[14] = 4;
rows[4] = 15;
cols[15] = 1;
cols[16] = 2;
rows[5] = 17;
std::copy(values, values + 17, cols);
scoped_ptr<CompressedRowSparseMatrix> transpose(matrix.Transpose());
ASSERT_EQ(transpose->row_blocks().size(), matrix.col_blocks().size());
for (int i = 0; i < transpose->row_blocks().size(); ++i) {
EXPECT_EQ(transpose->row_blocks()[i], matrix.col_blocks()[i]);
}
ASSERT_EQ(transpose->col_blocks().size(), matrix.row_blocks().size());
for (int i = 0; i < transpose->col_blocks().size(); ++i) {
EXPECT_EQ(transpose->col_blocks()[i], matrix.row_blocks()[i]);
}
Matrix dense_matrix;
matrix.ToDenseMatrix(&dense_matrix);
Matrix dense_transpose;
transpose->ToDenseMatrix(&dense_transpose);
EXPECT_NEAR((dense_matrix - dense_transpose.transpose()).norm(), 0.0, 1e-14);
}
TEST(CompressedRowSparseMatrix, ComputeOuterProduct) {
// "Randomly generated seed."
SetRandomState(29823);
int kMaxNumRowBlocks = 10;
int kMaxNumColBlocks = 10;
int kNumTrials = 10;
// Create a random matrix, compute its outer product using Eigen and
// ComputeOuterProduct. Convert both matrices to dense matrices and
// compare their upper triangular parts.
for (int num_row_blocks = 1;
num_row_blocks < kMaxNumRowBlocks;
++num_row_blocks) {
for (int num_col_blocks = 1;
num_col_blocks < kMaxNumColBlocks;
++num_col_blocks) {
for (int trial = 0; trial < kNumTrials; ++trial) {
RandomMatrixOptions options;
options.num_row_blocks = num_row_blocks;
options.num_col_blocks = num_col_blocks;
options.min_row_block_size = 1;
options.max_row_block_size = 5;
options.min_col_block_size = 1;
options.max_col_block_size = 10;
options.block_density = std::max(0.1, RandDouble());
VLOG(2) << "num row blocks: " << options.num_row_blocks;
VLOG(2) << "num col blocks: " << options.num_col_blocks;
VLOG(2) << "min row block size: " << options.min_row_block_size;
VLOG(2) << "max row block size: " << options.max_row_block_size;
VLOG(2) << "min col block size: " << options.min_col_block_size;
VLOG(2) << "max col block size: " << options.max_col_block_size;
VLOG(2) << "block density: " << options.block_density;
scoped_ptr<CompressedRowSparseMatrix> random_matrix(
CreateRandomCompressedRowSparseMatrix(options));
Eigen::MappedSparseMatrix<double, Eigen::RowMajor> mapped_random_matrix(
random_matrix->num_rows(),
random_matrix->num_cols(),
random_matrix->num_nonzeros(),
random_matrix->mutable_rows(),
random_matrix->mutable_cols(),
random_matrix->mutable_values());
Matrix expected_outer_product =
mapped_random_matrix.transpose() * mapped_random_matrix;
// Use compressed row lower triangular matrix, which will then
// get mapped to a compressed column upper triangular matrix.
vector<int> program;
scoped_ptr<CompressedRowSparseMatrix> outer_product(
CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram(
*random_matrix,
CompressedRowSparseMatrix::LOWER_TRIANGULAR,
&program));
CompressedRowSparseMatrix::ComputeOuterProduct(
*random_matrix, program, outer_product.get());
EXPECT_EQ(outer_product->row_blocks(), random_matrix->col_blocks());
EXPECT_EQ(outer_product->col_blocks(), random_matrix->col_blocks());
Matrix actual_outer_product =
Eigen::MappedSparseMatrix<double, Eigen::ColMajor>(
outer_product->num_rows(),
outer_product->num_rows(),
outer_product->num_nonzeros(),
outer_product->mutable_rows(),
outer_product->mutable_cols(),
outer_product->mutable_values());
expected_outer_product.triangularView<Eigen::StrictlyLower>().setZero();
actual_outer_product.triangularView<Eigen::StrictlyLower>().setZero();
EXPECT_EQ(actual_outer_product.rows(), actual_outer_product.cols());
EXPECT_EQ(expected_outer_product.rows(), expected_outer_product.cols());
EXPECT_EQ(actual_outer_product.rows(), expected_outer_product.rows());
const double diff_norm =
(actual_outer_product - expected_outer_product).norm() /
expected_outer_product.norm();
EXPECT_NEAR(diff_norm, 0.0, std::numeric_limits<double>::epsilon())
<< "expected: \n"
<< expected_outer_product << "\nactual: \n"
<< actual_outer_product;
}
}
}
}
} // namespace internal
} // namespace ceres