blob: 052bd5acd2e6fec858420ee227a4ecdaae0bc712 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2017 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/inner_product_computer.h"
#include <algorithm>
namespace ceres {
namespace internal {
namespace {
// Compute the product (in MATLAB notation)
//
// c(0:a_cols, 0:b_cols) = a' * b
//
// Where:
//
// a is ab_rows x a_cols
// b is ab_rows x b_cols
// c is a_cos x c_col_stride
//
// a, b and c are row-major matrices.
//
// Performance note:
// ----------------
//
// Technically this function is a repeat of a similarly named function
// in small_blas.h but its performance is considerably better than
// that of the version there due to the way it accesses memory.
//
// TODO(sameeragarwal): Measure and tune the performance of
// small_blas.h based on the insights gained here.
EIGEN_STRONG_INLINE void MatrixTransposeMatrixMultiply(const int ab_rows,
const double* a,
const int a_cols,
const double* b,
const int b_cols,
double* c,
int c_cols) {
// Compute c as the sum of ab_rows, rank 1 outer products of the
// corresponding rows of a and b.
for (int r = 0; r < ab_rows; ++r) {
double* c_r = c;
for (int i1 = 0; i1 < a_cols; ++i1) {
const double a_v = a[i1];
for (int i2 = 0; i2 < b_cols; ++i2) {
c_r[i2] += a_v * b[i2];
}
c_r += c_cols;
}
a += a_cols;
b += b_cols;
}
}
} // namespace
// Create the CompressedRowSparseMatrix matrix that will contain the
// inner product.
//
// storage_type controls whether the result matrix contains the upper
// or the lower triangular part of the product.
//
// num_nonzeros is the number of non-zeros in the result matrix.
CompressedRowSparseMatrix* InnerProductComputer::CreateResultMatrix(
const CompressedRowSparseMatrix::StorageType storage_type,
const int num_nonzeros) {
CompressedRowSparseMatrix* matrix =
new CompressedRowSparseMatrix(m_.num_cols(), m_.num_cols(), num_nonzeros);
matrix->set_storage_type(storage_type);
const CompressedRowBlockStructure* bs = m_.block_structure();
const std::vector<Block>& blocks = bs->cols;
matrix->mutable_row_blocks()->resize(blocks.size());
matrix->mutable_col_blocks()->resize(blocks.size());
for (int i = 0; i < blocks.size(); ++i) {
(*(matrix->mutable_row_blocks()))[i] = blocks[i].size;
(*(matrix->mutable_col_blocks()))[i] = blocks[i].size;
}
return matrix;
}
// Given the set of product terms in the inner product, return the
// total number of non-zeros in the result and for each row block of
// the result matrix, compute the number of non-zeros in any one row
// of the row block.
int InnerProductComputer::ComputeNonzeros(
const std::vector<InnerProductComputer::ProductTerm>& product_terms,
std::vector<int>* row_nnz) {
const CompressedRowBlockStructure* bs = m_.block_structure();
const std::vector<Block>& blocks = bs->cols;
row_nnz->resize(blocks.size());
std::fill(row_nnz->begin(), row_nnz->end(), 0);
// First product term.
(*row_nnz)[product_terms[0].row] = blocks[product_terms[0].col].size;
int num_nonzeros =
blocks[product_terms[0].row].size * blocks[product_terms[0].col].size;
// Remaining product terms.
for (int i = 1; i < product_terms.size(); ++i) {
const ProductTerm& previous = product_terms[i - 1];
const ProductTerm& current = product_terms[i];
// Each (row, col) block counts only once.
// This check depends on product sorted on (row, col).
if (current.row != previous.row || current.col != previous.col) {
(*row_nnz)[current.row] += blocks[current.col].size;
num_nonzeros += blocks[current.row].size * blocks[current.col].size;
}
}
return num_nonzeros;
}
InnerProductComputer::InnerProductComputer(const BlockSparseMatrix& m,
const int start_row_block,
const int end_row_block)
: m_(m), start_row_block_(start_row_block), end_row_block_(end_row_block) {}
// Compute the sparsity structure of the product m.transpose() * m
// and create a CompressedRowSparseMatrix corresponding to it.
//
// Also compute the "program" vector, which for every term in the
// block outer product provides the information for the entry in the
// values array of the result matrix where it should be accumulated.
//
// Since the entries of the program are the same for rows with the
// same sparsity structure, the program only stores the result for one
// row per row block. The Compute function reuses this information for
// each row in the row block.
//
// product_storage_type controls the form of the output matrix. It
// can be LOWER_TRIANGULAR or UPPER_TRIANGULAR.
InnerProductComputer* InnerProductComputer::Create(
const BlockSparseMatrix& m,
CompressedRowSparseMatrix::StorageType product_storage_type) {
return InnerProductComputer::Create(
m, 0, m.block_structure()->rows.size(), product_storage_type);
}
InnerProductComputer* InnerProductComputer::Create(
const BlockSparseMatrix& m,
const int start_row_block,
const int end_row_block,
CompressedRowSparseMatrix::StorageType product_storage_type) {
CHECK(product_storage_type == CompressedRowSparseMatrix::LOWER_TRIANGULAR ||
product_storage_type == CompressedRowSparseMatrix::UPPER_TRIANGULAR);
CHECK_GT(m.num_nonzeros(), 0)
<< "Congratulations, you found a bug in Ceres. Please report it.";
InnerProductComputer* inner_product_computer =
new InnerProductComputer(m, start_row_block, end_row_block);
inner_product_computer->Init(product_storage_type);
return inner_product_computer;
}
void InnerProductComputer::Init(
const CompressedRowSparseMatrix::StorageType product_storage_type) {
std::vector<InnerProductComputer::ProductTerm> product_terms;
const CompressedRowBlockStructure* bs = m_.block_structure();
// Give input matrix m in Block Sparse format
// (row_block, col_block)
// represent each block multiplication
// (row_block, col_block1)' X (row_block, col_block2)
// by its product term:
// (col_block1, col_block2, index)
for (int row_block = start_row_block_; row_block < end_row_block_;
++row_block) {
const CompressedRow& row = bs->rows[row_block];
for (int c1 = 0; c1 < row.cells.size(); ++c1) {
const Cell& cell1 = row.cells[c1];
int c2_begin, c2_end;
if (product_storage_type == CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
c2_begin = 0;
c2_end = c1 + 1;
} else {
c2_begin = c1;
c2_end = row.cells.size();
}
for (int c2 = c2_begin; c2 < c2_end; ++c2) {
const Cell& cell2 = row.cells[c2];
product_terms.push_back(InnerProductComputer::ProductTerm(
cell1.block_id, cell2.block_id, product_terms.size()));
}
}
}
std::sort(product_terms.begin(), product_terms.end());
ComputeOffsetsAndCreateResultMatrix(product_storage_type, product_terms);
}
void InnerProductComputer::ComputeOffsetsAndCreateResultMatrix(
const CompressedRowSparseMatrix::StorageType product_storage_type,
const std::vector<InnerProductComputer::ProductTerm>& product_terms) {
const int num_cols = m_.num_cols();
const std::vector<Block>& col_blocks = m_.block_structure()->cols;
std::vector<int> row_block_nnz;
const int num_nonzeros = ComputeNonzeros(product_terms, &row_block_nnz);
result_.reset(CreateResultMatrix(product_storage_type, num_nonzeros));
// Populate the row non-zero counts in the result matrix.
int* crsm_rows = result_->mutable_rows();
crsm_rows[0] = 0;
for (int i = 0; i < col_blocks.size(); ++i) {
for (int j = 0; j < col_blocks[i].size; ++j, ++crsm_rows) {
*(crsm_rows + 1) = *crsm_rows + row_block_nnz[i];
}
}
// The following macro FILL_CRSM_COL_BLOCK is key to understanding
// how this class works.
//
// It does two things.
//
// Sets the value for the current term in the result_offsets_ array
// and populates the cols array of the result matrix.
//
// row_block and col_block as the names imply, refer to the row and
// column blocks of the current term.
//
// row_nnz is the number of nonzeros in the result_matrix at the
// beginning of the first row of row_block.
//
// col_nnz is the number of nonzeros in the first row of the row
// block that occur before the current column block, i.e. this is
// sum of the sizes of all the column blocks in this row block that
// came before this column block.
//
// Given these two numbers and the total number of nonzeros in this
// row (nnz_in_row), we can now populate the cols array as follows:
//
// nnz + j * nnz_in_row is the beginning of the j^th row.
//
// nnz + j * nnz_in_row + col_nnz is the beginning of the column
// block in the j^th row.
//
// nnz + j * nnz_in_row + col_nnz + k is then the j^th row and the
// k^th column of the product block, whose value is
//
// col_blocks[col_block].position + k, which is the column number of
// the k^th column of the current column block.
#define FILL_CRSM_COL_BLOCK \
const int row_block = current->row; \
const int col_block = current->col; \
const int nnz_in_row = row_block_nnz[row_block]; \
int* crsm_cols = result_->mutable_cols(); \
result_offsets_[current->index] = nnz + col_nnz; \
for (int j = 0; j < col_blocks[row_block].size; ++j) { \
for (int k = 0; k < col_blocks[col_block].size; ++k) { \
crsm_cols[nnz + j * nnz_in_row + col_nnz + k] = \
col_blocks[col_block].position + k; \
} \
}
result_offsets_.resize(product_terms.size());
int col_nnz = 0;
int nnz = 0;
// Process the first term.
const InnerProductComputer::ProductTerm* current = &product_terms[0];
FILL_CRSM_COL_BLOCK;
// Process the rest of the terms.
for (int i = 1; i < product_terms.size(); ++i) {
current = &product_terms[i];
const InnerProductComputer::ProductTerm* previous = &product_terms[i - 1];
// If the current term is the same as the previous term, then it
// stores its product at the same location as the previous term.
if (previous->row == current->row && previous->col == current->col) {
result_offsets_[current->index] = result_offsets_[previous->index];
continue;
}
if (previous->row == current->row) {
// if the current and previous terms are in the same row block,
// then they differ in the column block, in which case advance
// col_nnz by the column size of the prevous term.
col_nnz += col_blocks[previous->col].size;
} else {
// If we have moved to a new row-block , then col_nnz is zero,
// and nnz is set to the beginning of the row block.
col_nnz = 0;
nnz += row_block_nnz[previous->row] * col_blocks[previous->row].size;
}
FILL_CRSM_COL_BLOCK;
}
}
// Use the results_offsets_ array to numerically compute the product
// m' * m and store it in result_.
//
// TODO(sameeragarwal): Multithreading support.
void InnerProductComputer::Compute() {
const double* m_values = m_.values();
const CompressedRowBlockStructure* bs = m_.block_structure();
const CompressedRowSparseMatrix::StorageType storage_type =
result_->storage_type();
result_->SetZero();
double* values = result_->mutable_values();
const int* rows = result_->rows();
int cursor = 0;
// Iterate row blocks.
for (int r = start_row_block_; r < end_row_block_; ++r) {
const CompressedRow& m_row = bs->rows[r];
for (int c1 = 0; c1 < m_row.cells.size(); ++c1) {
const Cell& cell1 = m_row.cells[c1];
const int c1_size = bs->cols[cell1.block_id].size;
const int row_nnz = rows[bs->cols[cell1.block_id].position + 1] -
rows[bs->cols[cell1.block_id].position];
int c2_begin, c2_end;
if (storage_type == CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
c2_begin = 0;
c2_end = c1 + 1;
} else {
c2_begin = c1;
c2_end = m_row.cells.size();
}
for (int c2 = c2_begin; c2 < c2_end; ++c2, ++cursor) {
const Cell& cell2 = m_row.cells[c2];
const int c2_size = bs->cols[cell2.block_id].size;
MatrixTransposeMatrixMultiply(m_row.block.size,
m_values + cell1.position, c1_size,
m_values + cell2.position, c2_size,
values + result_offsets_[cursor],
row_nnz);
}
}
}
CHECK_EQ(cursor, result_offsets_.size());
}
} // namespace internal
} // namespace ceres