| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2017 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_INTERNAL_INVERT_PSD_MATRIX_H_ |
| #define CERES_INTERNAL_INVERT_PSD_MATRIX_H_ |
| |
| #include "ceres/internal/eigen.h" |
| #include "glog/logging.h" |
| #include "Eigen/Dense" |
| |
| namespace ceres { |
| namespace internal { |
| |
| // Helper routine to compute the inverse or pseudo-inverse of a |
| // symmetric positive semi-definite matrix. |
| // |
| // assume_full_rank controls whether a Cholesky factorization or an |
| // Singular Value Decomposition is used to compute the inverse and the |
| // pseudo-inverse respectively. |
| // |
| // The template parameter kSize can either be Eigen::Dynamic or a |
| // positive integer equal to the number of rows of m. |
| template <int kSize> |
| typename EigenTypes<kSize, kSize>::Matrix InvertPSDMatrix( |
| const bool assume_full_rank, |
| const typename EigenTypes<kSize, kSize>::Matrix& m) { |
| const int size = m.rows(); |
| |
| // If the matrix can be assumed to be full rank, then just use the |
| // Cholesky factorization to invert it. |
| if (assume_full_rank) { |
| return m.template selfadjointView<Eigen::Upper>().llt().solve( |
| Matrix::Identity(size, size)); |
| } |
| |
| Eigen::JacobiSVD<typename EigenTypes<kSize, kSize>::Matrix> svd( |
| m, Eigen::ComputeThinU | Eigen::ComputeThinV); |
| const double tolerance = |
| std::numeric_limits<double>::epsilon() * size * svd.singularValues()(0); |
| |
| return svd.matrixV() * |
| (svd.singularValues().array() > tolerance) |
| .select(svd.singularValues().array().inverse(), 0) |
| .matrix() |
| .asDiagonal() * |
| svd.matrixU().adjoint(); |
| } |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_INTERNAL_INVERT_PSD_MATRIX_H_ |