| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/local_parameterization.h" | 
 |  | 
 | #include <cmath> | 
 | #include <limits> | 
 | #include <memory> | 
 |  | 
 | #include "Eigen/Geometry" | 
 | #include "ceres/autodiff_local_parameterization.h" | 
 | #include "ceres/internal/autodiff.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/householder_vector.h" | 
 | #include "ceres/random.h" | 
 | #include "ceres/rotation.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | TEST(IdentityParameterization, EverythingTest) { | 
 |   IdentityParameterization parameterization(3); | 
 |   EXPECT_EQ(parameterization.GlobalSize(), 3); | 
 |   EXPECT_EQ(parameterization.LocalSize(), 3); | 
 |  | 
 |   double x[3] = {1.0, 2.0, 3.0}; | 
 |   double delta[3] = {0.0, 1.0, 2.0}; | 
 |   double x_plus_delta[3] = {0.0, 0.0, 0.0}; | 
 |   parameterization.Plus(x, delta, x_plus_delta); | 
 |   EXPECT_EQ(x_plus_delta[0], 1.0); | 
 |   EXPECT_EQ(x_plus_delta[1], 3.0); | 
 |   EXPECT_EQ(x_plus_delta[2], 5.0); | 
 |  | 
 |   double jacobian[9]; | 
 |   parameterization.ComputeJacobian(x, jacobian); | 
 |   int k = 0; | 
 |   for (int i = 0; i < 3; ++i) { | 
 |     for (int j = 0; j < 3; ++j, ++k) { | 
 |       EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0); | 
 |     } | 
 |   } | 
 |  | 
 |   Matrix global_matrix = Matrix::Ones(10, 3); | 
 |   Matrix local_matrix = Matrix::Zero(10, 3); | 
 |   parameterization.MultiplyByJacobian( | 
 |       x, 10, global_matrix.data(), local_matrix.data()); | 
 |   EXPECT_EQ((local_matrix - global_matrix).norm(), 0.0); | 
 | } | 
 |  | 
 | TEST(SubsetParameterization, NegativeParameterIndexDeathTest) { | 
 |   std::vector<int> constant_parameters; | 
 |   constant_parameters.push_back(-1); | 
 |   EXPECT_DEATH_IF_SUPPORTED( | 
 |       SubsetParameterization parameterization(2, constant_parameters), | 
 |       "greater than equal to zero"); | 
 | } | 
 |  | 
 | TEST(SubsetParameterization, GreaterThanSizeParameterIndexDeathTest) { | 
 |   std::vector<int> constant_parameters; | 
 |   constant_parameters.push_back(2); | 
 |   EXPECT_DEATH_IF_SUPPORTED( | 
 |       SubsetParameterization parameterization(2, constant_parameters), | 
 |       "less than the size"); | 
 | } | 
 |  | 
 | TEST(SubsetParameterization, DuplicateParametersDeathTest) { | 
 |   std::vector<int> constant_parameters; | 
 |   constant_parameters.push_back(1); | 
 |   constant_parameters.push_back(1); | 
 |   EXPECT_DEATH_IF_SUPPORTED( | 
 |       SubsetParameterization parameterization(2, constant_parameters), | 
 |       "duplicates"); | 
 | } | 
 |  | 
 | TEST(SubsetParameterization, | 
 |      ProductParameterizationWithZeroLocalSizeSubsetParameterization1) { | 
 |   std::vector<int> constant_parameters; | 
 |   constant_parameters.push_back(0); | 
 |   LocalParameterization* subset_param = | 
 |       new SubsetParameterization(1, constant_parameters); | 
 |   LocalParameterization* identity_param = new IdentityParameterization(2); | 
 |   ProductParameterization product_param(subset_param, identity_param); | 
 |   EXPECT_EQ(product_param.GlobalSize(), 3); | 
 |   EXPECT_EQ(product_param.LocalSize(), 2); | 
 |   double x[] = {1.0, 1.0, 1.0}; | 
 |   double delta[] = {2.0, 3.0}; | 
 |   double x_plus_delta[] = {0.0, 0.0, 0.0}; | 
 |   EXPECT_TRUE(product_param.Plus(x, delta, x_plus_delta)); | 
 |   EXPECT_EQ(x_plus_delta[0], x[0]); | 
 |   EXPECT_EQ(x_plus_delta[1], x[1] + delta[0]); | 
 |   EXPECT_EQ(x_plus_delta[2], x[2] + delta[1]); | 
 |  | 
 |   Matrix actual_jacobian(3, 2); | 
 |   EXPECT_TRUE(product_param.ComputeJacobian(x, actual_jacobian.data())); | 
 | } | 
 |  | 
 | TEST(SubsetParameterization, | 
 |      ProductParameterizationWithZeroLocalSizeSubsetParameterization2) { | 
 |   std::vector<int> constant_parameters; | 
 |   constant_parameters.push_back(0); | 
 |   LocalParameterization* subset_param = | 
 |       new SubsetParameterization(1, constant_parameters); | 
 |   LocalParameterization* identity_param = new IdentityParameterization(2); | 
 |   ProductParameterization product_param(identity_param, subset_param); | 
 |   EXPECT_EQ(product_param.GlobalSize(), 3); | 
 |   EXPECT_EQ(product_param.LocalSize(), 2); | 
 |   double x[] = {1.0, 1.0, 1.0}; | 
 |   double delta[] = {2.0, 3.0}; | 
 |   double x_plus_delta[] = {0.0, 0.0, 0.0}; | 
 |   EXPECT_TRUE(product_param.Plus(x, delta, x_plus_delta)); | 
 |   EXPECT_EQ(x_plus_delta[0], x[0] + delta[0]); | 
 |   EXPECT_EQ(x_plus_delta[1], x[1] + delta[1]); | 
 |   EXPECT_EQ(x_plus_delta[2], x[2]); | 
 |  | 
 |   Matrix actual_jacobian(3, 2); | 
 |   EXPECT_TRUE(product_param.ComputeJacobian(x, actual_jacobian.data())); | 
 | } | 
 |  | 
 | TEST(SubsetParameterization, NormalFunctionTest) { | 
 |   const int kGlobalSize = 4; | 
 |   const int kLocalSize = 3; | 
 |  | 
 |   double x[kGlobalSize] = {1.0, 2.0, 3.0, 4.0}; | 
 |   for (int i = 0; i < kGlobalSize; ++i) { | 
 |     std::vector<int> constant_parameters; | 
 |     constant_parameters.push_back(i); | 
 |     SubsetParameterization parameterization(kGlobalSize, constant_parameters); | 
 |     double delta[kLocalSize] = {1.0, 2.0, 3.0}; | 
 |     double x_plus_delta[kGlobalSize] = {0.0, 0.0, 0.0}; | 
 |  | 
 |     parameterization.Plus(x, delta, x_plus_delta); | 
 |     int k = 0; | 
 |     for (int j = 0; j < kGlobalSize; ++j) { | 
 |       if (j == i) { | 
 |         EXPECT_EQ(x_plus_delta[j], x[j]); | 
 |       } else { | 
 |         EXPECT_EQ(x_plus_delta[j], x[j] + delta[k++]); | 
 |       } | 
 |     } | 
 |  | 
 |     double jacobian[kGlobalSize * kLocalSize]; | 
 |     parameterization.ComputeJacobian(x, jacobian); | 
 |     int delta_cursor = 0; | 
 |     int jacobian_cursor = 0; | 
 |     for (int j = 0; j < kGlobalSize; ++j) { | 
 |       if (j != i) { | 
 |         for (int k = 0; k < kLocalSize; ++k, jacobian_cursor++) { | 
 |           EXPECT_EQ(jacobian[jacobian_cursor], delta_cursor == k ? 1.0 : 0.0); | 
 |         } | 
 |         ++delta_cursor; | 
 |       } else { | 
 |         for (int k = 0; k < kLocalSize; ++k, jacobian_cursor++) { | 
 |           EXPECT_EQ(jacobian[jacobian_cursor], 0.0); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     Matrix global_matrix = Matrix::Ones(10, kGlobalSize); | 
 |     for (int row = 0; row < kGlobalSize; ++row) { | 
 |       for (int col = 0; col < kGlobalSize; ++col) { | 
 |         global_matrix(row, col) = col; | 
 |       } | 
 |     } | 
 |  | 
 |     Matrix local_matrix = Matrix::Zero(10, kLocalSize); | 
 |     parameterization.MultiplyByJacobian( | 
 |         x, 10, global_matrix.data(), local_matrix.data()); | 
 |     Matrix expected_local_matrix = | 
 |         global_matrix * MatrixRef(jacobian, kGlobalSize, kLocalSize); | 
 |     EXPECT_EQ((local_matrix - expected_local_matrix).norm(), 0.0); | 
 |   } | 
 | } | 
 |  | 
 | // Functor needed to implement automatically differentiated Plus for | 
 | // quaternions. | 
 | struct QuaternionPlus { | 
 |   template <typename T> | 
 |   bool operator()(const T* x, const T* delta, T* x_plus_delta) const { | 
 |     const T squared_norm_delta = | 
 |         delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; | 
 |  | 
 |     T q_delta[4]; | 
 |     if (squared_norm_delta > T(0.0)) { | 
 |       T norm_delta = sqrt(squared_norm_delta); | 
 |       const T sin_delta_by_delta = sin(norm_delta) / norm_delta; | 
 |       q_delta[0] = cos(norm_delta); | 
 |       q_delta[1] = sin_delta_by_delta * delta[0]; | 
 |       q_delta[2] = sin_delta_by_delta * delta[1]; | 
 |       q_delta[3] = sin_delta_by_delta * delta[2]; | 
 |     } else { | 
 |       // We do not just use q_delta = [1,0,0,0] here because that is a | 
 |       // constant and when used for automatic differentiation will | 
 |       // lead to a zero derivative. Instead we take a first order | 
 |       // approximation and evaluate it at zero. | 
 |       q_delta[0] = T(1.0); | 
 |       q_delta[1] = delta[0]; | 
 |       q_delta[2] = delta[1]; | 
 |       q_delta[3] = delta[2]; | 
 |     } | 
 |  | 
 |     QuaternionProduct(q_delta, x, x_plus_delta); | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Parameterization, typename Plus> | 
 | void QuaternionParameterizationTestHelper(const double* x, | 
 |                                           const double* delta, | 
 |                                           const double* x_plus_delta_ref) { | 
 |   const int kGlobalSize = 4; | 
 |   const int kLocalSize = 3; | 
 |  | 
 |   const double kTolerance = 1e-14; | 
 |  | 
 |   double x_plus_delta[kGlobalSize] = {0.0, 0.0, 0.0, 0.0}; | 
 |   Parameterization parameterization; | 
 |   parameterization.Plus(x, delta, x_plus_delta); | 
 |   for (int i = 0; i < kGlobalSize; ++i) { | 
 |     EXPECT_NEAR(x_plus_delta[i], x_plus_delta[i], kTolerance); | 
 |   } | 
 |  | 
 |   const double x_plus_delta_norm = sqrt( | 
 |       x_plus_delta[0] * x_plus_delta[0] + x_plus_delta[1] * x_plus_delta[1] + | 
 |       x_plus_delta[2] * x_plus_delta[2] + x_plus_delta[3] * x_plus_delta[3]); | 
 |  | 
 |   EXPECT_NEAR(x_plus_delta_norm, 1.0, kTolerance); | 
 |  | 
 |   double jacobian_ref[12]; | 
 |   double zero_delta[kLocalSize] = {0.0, 0.0, 0.0}; | 
 |   const double* parameters[2] = {x, zero_delta}; | 
 |   double* jacobian_array[2] = {NULL, jacobian_ref}; | 
 |  | 
 |   // Autodiff jacobian at delta_x = 0. | 
 |   internal::AutoDifferentiate<kGlobalSize, | 
 |                               StaticParameterDims<kGlobalSize, kLocalSize>>( | 
 |       Plus(), parameters, kGlobalSize, x_plus_delta, jacobian_array); | 
 |  | 
 |   double jacobian[12]; | 
 |   parameterization.ComputeJacobian(x, jacobian); | 
 |   for (int i = 0; i < 12; ++i) { | 
 |     EXPECT_TRUE(IsFinite(jacobian[i])); | 
 |     EXPECT_NEAR(jacobian[i], jacobian_ref[i], kTolerance) | 
 |         << "Jacobian mismatch: i = " << i << "\n Expected \n" | 
 |         << ConstMatrixRef(jacobian_ref, kGlobalSize, kLocalSize) | 
 |         << "\n Actual \n" | 
 |         << ConstMatrixRef(jacobian, kGlobalSize, kLocalSize); | 
 |   } | 
 |  | 
 |   Matrix global_matrix = Matrix::Random(10, kGlobalSize); | 
 |   Matrix local_matrix = Matrix::Zero(10, kLocalSize); | 
 |   parameterization.MultiplyByJacobian( | 
 |       x, 10, global_matrix.data(), local_matrix.data()); | 
 |   Matrix expected_local_matrix = | 
 |       global_matrix * MatrixRef(jacobian, kGlobalSize, kLocalSize); | 
 |   EXPECT_NEAR((local_matrix - expected_local_matrix).norm(), | 
 |               0.0, | 
 |               10.0 * std::numeric_limits<double>::epsilon()); | 
 | } | 
 |  | 
 | template <int N> | 
 | void Normalize(double* x) { | 
 |   VectorRef(x, N).normalize(); | 
 | } | 
 |  | 
 | TEST(QuaternionParameterization, ZeroTest) { | 
 |   double x[4] = {0.5, 0.5, 0.5, 0.5}; | 
 |   double delta[3] = {0.0, 0.0, 0.0}; | 
 |   double q_delta[4] = {1.0, 0.0, 0.0, 0.0}; | 
 |   double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0}; | 
 |   QuaternionProduct(q_delta, x, x_plus_delta); | 
 |   QuaternionParameterizationTestHelper<QuaternionParameterization, | 
 |                                        QuaternionPlus>(x, delta, x_plus_delta); | 
 | } | 
 |  | 
 | TEST(QuaternionParameterization, NearZeroTest) { | 
 |   double x[4] = {0.52, 0.25, 0.15, 0.45}; | 
 |   Normalize<4>(x); | 
 |  | 
 |   double delta[3] = {0.24, 0.15, 0.10}; | 
 |   for (int i = 0; i < 3; ++i) { | 
 |     delta[i] = delta[i] * 1e-14; | 
 |   } | 
 |  | 
 |   double q_delta[4]; | 
 |   q_delta[0] = 1.0; | 
 |   q_delta[1] = delta[0]; | 
 |   q_delta[2] = delta[1]; | 
 |   q_delta[3] = delta[2]; | 
 |  | 
 |   double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0}; | 
 |   QuaternionProduct(q_delta, x, x_plus_delta); | 
 |   QuaternionParameterizationTestHelper<QuaternionParameterization, | 
 |                                        QuaternionPlus>(x, delta, x_plus_delta); | 
 | } | 
 |  | 
 | TEST(QuaternionParameterization, AwayFromZeroTest) { | 
 |   double x[4] = {0.52, 0.25, 0.15, 0.45}; | 
 |   Normalize<4>(x); | 
 |  | 
 |   double delta[3] = {0.24, 0.15, 0.10}; | 
 |   const double delta_norm = | 
 |       sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]); | 
 |   double q_delta[4]; | 
 |   q_delta[0] = cos(delta_norm); | 
 |   q_delta[1] = sin(delta_norm) / delta_norm * delta[0]; | 
 |   q_delta[2] = sin(delta_norm) / delta_norm * delta[1]; | 
 |   q_delta[3] = sin(delta_norm) / delta_norm * delta[2]; | 
 |  | 
 |   double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0}; | 
 |   QuaternionProduct(q_delta, x, x_plus_delta); | 
 |   QuaternionParameterizationTestHelper<QuaternionParameterization, | 
 |                                        QuaternionPlus>(x, delta, x_plus_delta); | 
 | } | 
 |  | 
 | // Functor needed to implement automatically differentiated Plus for | 
 | // Eigen's quaternion. | 
 | struct EigenQuaternionPlus { | 
 |   template <typename T> | 
 |   bool operator()(const T* x, const T* delta, T* x_plus_delta) const { | 
 |     const T norm_delta = | 
 |         sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]); | 
 |  | 
 |     Eigen::Quaternion<T> q_delta; | 
 |     if (norm_delta > T(0.0)) { | 
 |       const T sin_delta_by_delta = sin(norm_delta) / norm_delta; | 
 |       q_delta.coeffs() << sin_delta_by_delta * delta[0], | 
 |           sin_delta_by_delta * delta[1], sin_delta_by_delta * delta[2], | 
 |           cos(norm_delta); | 
 |     } else { | 
 |       // We do not just use q_delta = [0,0,0,1] here because that is a | 
 |       // constant and when used for automatic differentiation will | 
 |       // lead to a zero derivative. Instead we take a first order | 
 |       // approximation and evaluate it at zero. | 
 |       q_delta.coeffs() << delta[0], delta[1], delta[2], T(1.0); | 
 |     } | 
 |  | 
 |     Eigen::Map<Eigen::Quaternion<T>> x_plus_delta_ref(x_plus_delta); | 
 |     Eigen::Map<const Eigen::Quaternion<T>> x_ref(x); | 
 |     x_plus_delta_ref = q_delta * x_ref; | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | TEST(EigenQuaternionParameterization, ZeroTest) { | 
 |   Eigen::Quaterniond x(0.5, 0.5, 0.5, 0.5); | 
 |   double delta[3] = {0.0, 0.0, 0.0}; | 
 |   Eigen::Quaterniond q_delta(1.0, 0.0, 0.0, 0.0); | 
 |   Eigen::Quaterniond x_plus_delta = q_delta * x; | 
 |   QuaternionParameterizationTestHelper<EigenQuaternionParameterization, | 
 |                                        EigenQuaternionPlus>( | 
 |       x.coeffs().data(), delta, x_plus_delta.coeffs().data()); | 
 | } | 
 |  | 
 | TEST(EigenQuaternionParameterization, NearZeroTest) { | 
 |   Eigen::Quaterniond x(0.52, 0.25, 0.15, 0.45); | 
 |   x.normalize(); | 
 |  | 
 |   double delta[3] = {0.24, 0.15, 0.10}; | 
 |   for (int i = 0; i < 3; ++i) { | 
 |     delta[i] = delta[i] * 1e-14; | 
 |   } | 
 |  | 
 |   // Note: w is first in the constructor. | 
 |   Eigen::Quaterniond q_delta(1.0, delta[0], delta[1], delta[2]); | 
 |  | 
 |   Eigen::Quaterniond x_plus_delta = q_delta * x; | 
 |   QuaternionParameterizationTestHelper<EigenQuaternionParameterization, | 
 |                                        EigenQuaternionPlus>( | 
 |       x.coeffs().data(), delta, x_plus_delta.coeffs().data()); | 
 | } | 
 |  | 
 | TEST(EigenQuaternionParameterization, AwayFromZeroTest) { | 
 |   Eigen::Quaterniond x(0.52, 0.25, 0.15, 0.45); | 
 |   x.normalize(); | 
 |  | 
 |   double delta[3] = {0.24, 0.15, 0.10}; | 
 |   const double delta_norm = | 
 |       sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]); | 
 |  | 
 |   // Note: w is first in the constructor. | 
 |   Eigen::Quaterniond q_delta(cos(delta_norm), | 
 |                              sin(delta_norm) / delta_norm * delta[0], | 
 |                              sin(delta_norm) / delta_norm * delta[1], | 
 |                              sin(delta_norm) / delta_norm * delta[2]); | 
 |  | 
 |   Eigen::Quaterniond x_plus_delta = q_delta * x; | 
 |   QuaternionParameterizationTestHelper<EigenQuaternionParameterization, | 
 |                                        EigenQuaternionPlus>( | 
 |       x.coeffs().data(), delta, x_plus_delta.coeffs().data()); | 
 | } | 
 |  | 
 | // Functor needed to implement automatically differentiated Plus for | 
 | // homogeneous vectors. | 
 | template <int Dim> | 
 | struct HomogeneousVectorParameterizationPlus { | 
 |   template <typename Scalar> | 
 |   bool operator()(const Scalar* p_x, | 
 |                   const Scalar* p_delta, | 
 |                   Scalar* p_x_plus_delta) const { | 
 |     Eigen::Map<const Eigen::Matrix<Scalar, Dim, 1>> x(p_x); | 
 |     Eigen::Map<const Eigen::Matrix<Scalar, Dim - 1, 1>> delta(p_delta); | 
 |     Eigen::Map<Eigen::Matrix<Scalar, Dim, 1>> x_plus_delta(p_x_plus_delta); | 
 |  | 
 |     const Scalar squared_norm_delta = delta.squaredNorm(); | 
 |  | 
 |     Eigen::Matrix<Scalar, Dim, 1> y; | 
 |     Scalar one_half(0.5); | 
 |     if (squared_norm_delta > Scalar(0.0)) { | 
 |       Scalar norm_delta = sqrt(squared_norm_delta); | 
 |       Scalar norm_delta_div_2 = 0.5 * norm_delta; | 
 |       const Scalar sin_delta_by_delta = | 
 |           sin(norm_delta_div_2) / norm_delta_div_2; | 
 |       y.template head<Dim - 1>() = sin_delta_by_delta * one_half * delta; | 
 |       y[Dim - 1] = cos(norm_delta_div_2); | 
 |  | 
 |     } else { | 
 |       // We do not just use y = [0,0,0,1] here because that is a | 
 |       // constant and when used for automatic differentiation will | 
 |       // lead to a zero derivative. Instead we take a first order | 
 |       // approximation and evaluate it at zero. | 
 |       y.template head<Dim - 1>() = delta * one_half; | 
 |       y[Dim - 1] = Scalar(1.0); | 
 |     } | 
 |  | 
 |     Eigen::Matrix<Scalar, Dim, 1> v; | 
 |     Scalar beta; | 
 |  | 
 |     // NOTE: The explicit template arguments are needed here because | 
 |     // ComputeHouseholderVector is templated and some versions of MSVC | 
 |     // have trouble deducing the type of v automatically. | 
 |     internal::ComputeHouseholderVector< | 
 |         Eigen::Map<const Eigen::Matrix<Scalar, Dim, 1>>, | 
 |         Scalar, | 
 |         Dim>(x, &v, &beta); | 
 |  | 
 |     x_plus_delta = x.norm() * (y - v * (beta * v.dot(y))); | 
 |  | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | static void HomogeneousVectorParameterizationHelper(const double* x, | 
 |                                                     const double* delta) { | 
 |   const double kTolerance = 1e-14; | 
 |  | 
 |   HomogeneousVectorParameterization homogeneous_vector_parameterization(4); | 
 |  | 
 |   // Ensure the update maintains the norm. | 
 |   double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0}; | 
 |   homogeneous_vector_parameterization.Plus(x, delta, x_plus_delta); | 
 |  | 
 |   const double x_plus_delta_norm = sqrt( | 
 |       x_plus_delta[0] * x_plus_delta[0] + x_plus_delta[1] * x_plus_delta[1] + | 
 |       x_plus_delta[2] * x_plus_delta[2] + x_plus_delta[3] * x_plus_delta[3]); | 
 |  | 
 |   const double x_norm = | 
 |       sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3]); | 
 |  | 
 |   EXPECT_NEAR(x_plus_delta_norm, x_norm, kTolerance); | 
 |  | 
 |   // Autodiff jacobian at delta_x = 0. | 
 |   AutoDiffLocalParameterization<HomogeneousVectorParameterizationPlus<4>, 4, 3> | 
 |       autodiff_jacobian; | 
 |  | 
 |   double jacobian_autodiff[12]; | 
 |   double jacobian_analytic[12]; | 
 |  | 
 |   homogeneous_vector_parameterization.ComputeJacobian(x, jacobian_analytic); | 
 |   autodiff_jacobian.ComputeJacobian(x, jacobian_autodiff); | 
 |  | 
 |   for (int i = 0; i < 12; ++i) { | 
 |     EXPECT_TRUE(ceres::IsFinite(jacobian_analytic[i])); | 
 |     EXPECT_NEAR(jacobian_analytic[i], jacobian_autodiff[i], kTolerance) | 
 |         << "Jacobian mismatch: i = " << i << ", " << jacobian_analytic[i] << " " | 
 |         << jacobian_autodiff[i]; | 
 |   } | 
 | } | 
 |  | 
 | TEST(HomogeneousVectorParameterization, ZeroTest) { | 
 |   double x[4] = {0.0, 0.0, 0.0, 1.0}; | 
 |   Normalize<4>(x); | 
 |   double delta[3] = {0.0, 0.0, 0.0}; | 
 |  | 
 |   HomogeneousVectorParameterizationHelper(x, delta); | 
 | } | 
 |  | 
 | TEST(HomogeneousVectorParameterization, NearZeroTest1) { | 
 |   double x[4] = {1e-5, 1e-5, 1e-5, 1.0}; | 
 |   Normalize<4>(x); | 
 |   double delta[3] = {0.0, 1.0, 0.0}; | 
 |  | 
 |   HomogeneousVectorParameterizationHelper(x, delta); | 
 | } | 
 |  | 
 | TEST(HomogeneousVectorParameterization, NearZeroTest2) { | 
 |   double x[4] = {0.001, 0.0, 0.0, 0.0}; | 
 |   double delta[3] = {0.0, 1.0, 0.0}; | 
 |  | 
 |   HomogeneousVectorParameterizationHelper(x, delta); | 
 | } | 
 |  | 
 | TEST(HomogeneousVectorParameterization, AwayFromZeroTest1) { | 
 |   double x[4] = {0.52, 0.25, 0.15, 0.45}; | 
 |   Normalize<4>(x); | 
 |   double delta[3] = {0.0, 1.0, -0.5}; | 
 |  | 
 |   HomogeneousVectorParameterizationHelper(x, delta); | 
 | } | 
 |  | 
 | TEST(HomogeneousVectorParameterization, AwayFromZeroTest2) { | 
 |   double x[4] = {0.87, -0.25, -0.34, 0.45}; | 
 |   Normalize<4>(x); | 
 |   double delta[3] = {0.0, 0.0, -0.5}; | 
 |  | 
 |   HomogeneousVectorParameterizationHelper(x, delta); | 
 | } | 
 |  | 
 | TEST(HomogeneousVectorParameterization, AwayFromZeroTest3) { | 
 |   double x[4] = {0.0, 0.0, 0.0, 2.0}; | 
 |   double delta[3] = {0.0, 0.0, 0}; | 
 |  | 
 |   HomogeneousVectorParameterizationHelper(x, delta); | 
 | } | 
 |  | 
 | TEST(HomogeneousVectorParameterization, AwayFromZeroTest4) { | 
 |   double x[4] = {0.2, -1.0, 0.0, 2.0}; | 
 |   double delta[3] = {1.4, 0.0, -0.5}; | 
 |  | 
 |   HomogeneousVectorParameterizationHelper(x, delta); | 
 | } | 
 |  | 
 | TEST(HomogeneousVectorParameterization, AwayFromZeroTest5) { | 
 |   double x[4] = {2.0, 0.0, 0.0, 0.0}; | 
 |   double delta[3] = {1.4, 0.0, -0.5}; | 
 |  | 
 |   HomogeneousVectorParameterizationHelper(x, delta); | 
 | } | 
 |  | 
 | TEST(HomogeneousVectorParameterization, DeathTests) { | 
 |   EXPECT_DEATH_IF_SUPPORTED(HomogeneousVectorParameterization x(1), "size"); | 
 | } | 
 |  | 
 | // Functor needed to implement automatically differentiated Plus for | 
 | // line parameterization. | 
 | template <int AmbientSpaceDim> | 
 | struct LineParameterizationPlus { | 
 |   template <typename Scalar> | 
 |   bool operator()(const Scalar* p_x, | 
 |                   const Scalar* p_delta, | 
 |                   Scalar* p_x_plus_delta) const { | 
 |     static constexpr int kTangetSpaceDim = AmbientSpaceDim - 1; | 
 |     Eigen::Map<const Eigen::Matrix<Scalar, AmbientSpaceDim, 1>> origin_point( | 
 |         p_x); | 
 |     Eigen::Map<const Eigen::Matrix<Scalar, AmbientSpaceDim, 1>> dir( | 
 |         p_x + AmbientSpaceDim); | 
 |     Eigen::Map<const Eigen::Matrix<Scalar, kTangetSpaceDim, 1>> | 
 |         delta_origin_point(p_delta); | 
 |     Eigen::Map<Eigen::Matrix<Scalar, AmbientSpaceDim, 1>> | 
 |         origin_point_plus_delta(p_x_plus_delta); | 
 |  | 
 |     HomogeneousVectorParameterizationPlus<AmbientSpaceDim> dir_plus; | 
 |     dir_plus(dir.data(), | 
 |              p_delta + kTangetSpaceDim, | 
 |              p_x_plus_delta + AmbientSpaceDim); | 
 |  | 
 |     Eigen::Matrix<Scalar, AmbientSpaceDim, 1> v; | 
 |     Scalar beta; | 
 |  | 
 |     // NOTE: The explicit template arguments are needed here because | 
 |     // ComputeHouseholderVector is templated and some versions of MSVC | 
 |     // have trouble deducing the type of v automatically. | 
 |     internal::ComputeHouseholderVector< | 
 |         Eigen::Map<const Eigen::Matrix<Scalar, AmbientSpaceDim, 1>>, | 
 |         Scalar, | 
 |         AmbientSpaceDim>(dir, &v, &beta); | 
 |  | 
 |     Eigen::Matrix<Scalar, AmbientSpaceDim, 1> y; | 
 |     y << 0.5 * delta_origin_point, Scalar(0.0); | 
 |     origin_point_plus_delta = origin_point + y - v * (beta * v.dot(y)); | 
 |  | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | template <int AmbientSpaceDim> | 
 | static void LineParameterizationHelper(const double* x_ptr, | 
 |                                        const double* delta) { | 
 |   const double kTolerance = 1e-14; | 
 |  | 
 |   static constexpr int ParameterDim = 2 * AmbientSpaceDim; | 
 |   static constexpr int TangientParameterDim = 2 * (AmbientSpaceDim - 1); | 
 |  | 
 |   LineParameterization<AmbientSpaceDim> line_parameterization; | 
 |  | 
 |   using ParameterVector = Eigen::Matrix<double, ParameterDim, 1>; | 
 |   ParameterVector x_plus_delta = ParameterVector::Zero(); | 
 |   line_parameterization.Plus(x_ptr, delta, x_plus_delta.data()); | 
 |  | 
 |   // Ensure the update maintains the norm for the line direction. | 
 |   Eigen::Map<const ParameterVector> x(x_ptr); | 
 |   const double dir_plus_delta_norm = | 
 |       x_plus_delta.template tail<AmbientSpaceDim>().norm(); | 
 |   const double dir_norm = x.template tail<AmbientSpaceDim>().norm(); | 
 |   EXPECT_NEAR(dir_plus_delta_norm, dir_norm, kTolerance); | 
 |  | 
 |   // Ensure the update of the origin point is perpendicular to the line | 
 |   // direction. | 
 |   const double dot_prod_val = x.template tail<AmbientSpaceDim>().dot( | 
 |       x_plus_delta.template head<AmbientSpaceDim>() - | 
 |       x.template head<AmbientSpaceDim>()); | 
 |   EXPECT_NEAR(dot_prod_val, 0.0, kTolerance); | 
 |  | 
 |   // Autodiff jacobian at delta_x = 0. | 
 |   AutoDiffLocalParameterization<LineParameterizationPlus<AmbientSpaceDim>, | 
 |                                 ParameterDim, | 
 |                                 TangientParameterDim> | 
 |       autodiff_jacobian; | 
 |  | 
 |   using JacobianMatrix = Eigen:: | 
 |       Matrix<double, ParameterDim, TangientParameterDim, Eigen::RowMajor>; | 
 |   constexpr double kNaN = std::numeric_limits<double>::quiet_NaN(); | 
 |   JacobianMatrix jacobian_autodiff = JacobianMatrix::Constant(kNaN); | 
 |   JacobianMatrix jacobian_analytic = JacobianMatrix::Constant(kNaN); | 
 |  | 
 |   autodiff_jacobian.ComputeJacobian(x_ptr, jacobian_autodiff.data()); | 
 |   line_parameterization.ComputeJacobian(x_ptr, jacobian_analytic.data()); | 
 |  | 
 |   EXPECT_FALSE(jacobian_autodiff.hasNaN()); | 
 |   EXPECT_FALSE(jacobian_analytic.hasNaN()); | 
 |   EXPECT_TRUE(jacobian_autodiff.isApprox(jacobian_analytic)) | 
 |       << "auto diff:\n" | 
 |       << jacobian_autodiff << "\n" | 
 |       << "analytic diff:\n" | 
 |       << jacobian_analytic; | 
 | } | 
 |  | 
 | TEST(LineParameterization, ZeroTest3D) { | 
 |   double x[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}; | 
 |   double delta[4] = {0.0, 0.0, 0.0, 0.0}; | 
 |  | 
 |   LineParameterizationHelper<3>(x, delta); | 
 | } | 
 |  | 
 | TEST(LineParameterization, ZeroTest4D) { | 
 |   double x[8] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}; | 
 |   double delta[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; | 
 |  | 
 |   LineParameterizationHelper<4>(x, delta); | 
 | } | 
 |  | 
 | TEST(LineParameterization, ZeroOriginPointTest3D) { | 
 |   double x[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}; | 
 |   double delta[4] = {0.0, 0.0, 1.0, 2.0}; | 
 |  | 
 |   LineParameterizationHelper<3>(x, delta); | 
 | } | 
 |  | 
 | TEST(LineParameterization, ZeroOriginPointTest4D) { | 
 |   double x[8] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}; | 
 |   double delta[6] = {0.0, 0.0, 0.0, 1.0, 2.0, 3.0}; | 
 |  | 
 |   LineParameterizationHelper<4>(x, delta); | 
 | } | 
 |  | 
 | TEST(LineParameterization, ZeroDirTest3D) { | 
 |   double x[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}; | 
 |   double delta[4] = {3.0, 2.0, 0.0, 0.0}; | 
 |  | 
 |   LineParameterizationHelper<3>(x, delta); | 
 | } | 
 |  | 
 | TEST(LineParameterization, ZeroDirTest4D) { | 
 |   double x[8] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}; | 
 |   double delta[6] = {3.0, 2.0, 1.0, 0.0, 0.0, 0.0}; | 
 |  | 
 |   LineParameterizationHelper<4>(x, delta); | 
 | } | 
 |  | 
 | TEST(LineParameterization, AwayFromZeroTest3D1) { | 
 |   Eigen::Matrix<double, 6, 1> x; | 
 |   x.head<3>() << 1.54, 2.32, 1.34; | 
 |   x.tail<3>() << 0.52, 0.25, 0.15; | 
 |   x.tail<3>().normalize(); | 
 |  | 
 |   double delta[4] = {4.0, 7.0, 1.0, -0.5}; | 
 |  | 
 |   LineParameterizationHelper<3>(x.data(), delta); | 
 | } | 
 |  | 
 | TEST(LineParameterization, AwayFromZeroTest4D1) { | 
 |   Eigen::Matrix<double, 8, 1> x; | 
 |   x.head<4>() << 1.54, 2.32, 1.34, 3.23; | 
 |   x.tail<4>() << 0.52, 0.25, 0.15, 0.45; | 
 |   x.tail<4>().normalize(); | 
 |  | 
 |   double delta[6] = {4.0, 7.0, -3.0, 0.0, 1.0, -0.5}; | 
 |  | 
 |   LineParameterizationHelper<4>(x.data(), delta); | 
 | } | 
 |  | 
 | TEST(LineParameterization, AwayFromZeroTest3D2) { | 
 |   Eigen::Matrix<double, 6, 1> x; | 
 |   x.head<3>() << 7.54, -2.81, 8.63; | 
 |   x.tail<3>() << 2.52, 5.25, 4.15; | 
 |  | 
 |   double delta[4] = {4.0, 7.0, 1.0, -0.5}; | 
 |  | 
 |   LineParameterizationHelper<3>(x.data(), delta); | 
 | } | 
 |  | 
 | TEST(LineParameterization, AwayFromZeroTest4D2) { | 
 |   Eigen::Matrix<double, 8, 1> x; | 
 |   x.head<4>() << 7.54, -2.81, 8.63, 6.93; | 
 |   x.tail<4>() << 2.52, 5.25, 4.15, 1.45; | 
 |  | 
 |   double delta[6] = {4.0, 7.0, -3.0, 2.0, 1.0, -0.5}; | 
 |  | 
 |   LineParameterizationHelper<4>(x.data(), delta); | 
 | } | 
 |  | 
 | class ProductParameterizationTest : public ::testing::Test { | 
 |  protected: | 
 |   void SetUp() final { | 
 |     const int global_size1 = 5; | 
 |     std::vector<int> constant_parameters1; | 
 |     constant_parameters1.push_back(2); | 
 |     param1_.reset( | 
 |         new SubsetParameterization(global_size1, constant_parameters1)); | 
 |  | 
 |     const int global_size2 = 3; | 
 |     std::vector<int> constant_parameters2; | 
 |     constant_parameters2.push_back(0); | 
 |     constant_parameters2.push_back(1); | 
 |     param2_.reset( | 
 |         new SubsetParameterization(global_size2, constant_parameters2)); | 
 |  | 
 |     const int global_size3 = 4; | 
 |     std::vector<int> constant_parameters3; | 
 |     constant_parameters3.push_back(1); | 
 |     param3_.reset( | 
 |         new SubsetParameterization(global_size3, constant_parameters3)); | 
 |  | 
 |     const int global_size4 = 2; | 
 |     std::vector<int> constant_parameters4; | 
 |     constant_parameters4.push_back(1); | 
 |     param4_.reset( | 
 |         new SubsetParameterization(global_size4, constant_parameters4)); | 
 |   } | 
 |  | 
 |   std::unique_ptr<LocalParameterization> param1_; | 
 |   std::unique_ptr<LocalParameterization> param2_; | 
 |   std::unique_ptr<LocalParameterization> param3_; | 
 |   std::unique_ptr<LocalParameterization> param4_; | 
 | }; | 
 |  | 
 | TEST_F(ProductParameterizationTest, LocalAndGlobalSize2) { | 
 |   LocalParameterization* param1 = param1_.release(); | 
 |   LocalParameterization* param2 = param2_.release(); | 
 |  | 
 |   ProductParameterization product_param(param1, param2); | 
 |   EXPECT_EQ(product_param.LocalSize(), | 
 |             param1->LocalSize() + param2->LocalSize()); | 
 |   EXPECT_EQ(product_param.GlobalSize(), | 
 |             param1->GlobalSize() + param2->GlobalSize()); | 
 | } | 
 |  | 
 | TEST_F(ProductParameterizationTest, LocalAndGlobalSize3) { | 
 |   LocalParameterization* param1 = param1_.release(); | 
 |   LocalParameterization* param2 = param2_.release(); | 
 |   LocalParameterization* param3 = param3_.release(); | 
 |  | 
 |   ProductParameterization product_param(param1, param2, param3); | 
 |   EXPECT_EQ(product_param.LocalSize(), | 
 |             param1->LocalSize() + param2->LocalSize() + param3->LocalSize()); | 
 |   EXPECT_EQ(product_param.GlobalSize(), | 
 |             param1->GlobalSize() + param2->GlobalSize() + param3->GlobalSize()); | 
 | } | 
 |  | 
 | TEST_F(ProductParameterizationTest, LocalAndGlobalSize4) { | 
 |   LocalParameterization* param1 = param1_.release(); | 
 |   LocalParameterization* param2 = param2_.release(); | 
 |   LocalParameterization* param3 = param3_.release(); | 
 |   LocalParameterization* param4 = param4_.release(); | 
 |  | 
 |   ProductParameterization product_param(param1, param2, param3, param4); | 
 |   EXPECT_EQ(product_param.LocalSize(), | 
 |             param1->LocalSize() + param2->LocalSize() + param3->LocalSize() + | 
 |                 param4->LocalSize()); | 
 |   EXPECT_EQ(product_param.GlobalSize(), | 
 |             param1->GlobalSize() + param2->GlobalSize() + param3->GlobalSize() + | 
 |                 param4->GlobalSize()); | 
 | } | 
 |  | 
 | TEST_F(ProductParameterizationTest, Plus) { | 
 |   LocalParameterization* param1 = param1_.release(); | 
 |   LocalParameterization* param2 = param2_.release(); | 
 |   LocalParameterization* param3 = param3_.release(); | 
 |   LocalParameterization* param4 = param4_.release(); | 
 |  | 
 |   ProductParameterization product_param(param1, param2, param3, param4); | 
 |   std::vector<double> x(product_param.GlobalSize(), 0.0); | 
 |   std::vector<double> delta(product_param.LocalSize(), 0.0); | 
 |   std::vector<double> x_plus_delta_expected(product_param.GlobalSize(), 0.0); | 
 |   std::vector<double> x_plus_delta(product_param.GlobalSize(), 0.0); | 
 |  | 
 |   for (int i = 0; i < product_param.GlobalSize(); ++i) { | 
 |     x[i] = RandNormal(); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < product_param.LocalSize(); ++i) { | 
 |     delta[i] = RandNormal(); | 
 |   } | 
 |  | 
 |   EXPECT_TRUE(product_param.Plus(&x[0], &delta[0], &x_plus_delta_expected[0])); | 
 |   int x_cursor = 0; | 
 |   int delta_cursor = 0; | 
 |  | 
 |   EXPECT_TRUE(param1->Plus( | 
 |       &x[x_cursor], &delta[delta_cursor], &x_plus_delta[x_cursor])); | 
 |   x_cursor += param1->GlobalSize(); | 
 |   delta_cursor += param1->LocalSize(); | 
 |  | 
 |   EXPECT_TRUE(param2->Plus( | 
 |       &x[x_cursor], &delta[delta_cursor], &x_plus_delta[x_cursor])); | 
 |   x_cursor += param2->GlobalSize(); | 
 |   delta_cursor += param2->LocalSize(); | 
 |  | 
 |   EXPECT_TRUE(param3->Plus( | 
 |       &x[x_cursor], &delta[delta_cursor], &x_plus_delta[x_cursor])); | 
 |   x_cursor += param3->GlobalSize(); | 
 |   delta_cursor += param3->LocalSize(); | 
 |  | 
 |   EXPECT_TRUE(param4->Plus( | 
 |       &x[x_cursor], &delta[delta_cursor], &x_plus_delta[x_cursor])); | 
 |   x_cursor += param4->GlobalSize(); | 
 |   delta_cursor += param4->LocalSize(); | 
 |  | 
 |   for (int i = 0; i < x.size(); ++i) { | 
 |     EXPECT_EQ(x_plus_delta[i], x_plus_delta_expected[i]); | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(ProductParameterizationTest, ComputeJacobian) { | 
 |   LocalParameterization* param1 = param1_.release(); | 
 |   LocalParameterization* param2 = param2_.release(); | 
 |   LocalParameterization* param3 = param3_.release(); | 
 |   LocalParameterization* param4 = param4_.release(); | 
 |  | 
 |   ProductParameterization product_param(param1, param2, param3, param4); | 
 |   std::vector<double> x(product_param.GlobalSize(), 0.0); | 
 |  | 
 |   for (int i = 0; i < product_param.GlobalSize(); ++i) { | 
 |     x[i] = RandNormal(); | 
 |   } | 
 |  | 
 |   Matrix jacobian = | 
 |       Matrix::Random(product_param.GlobalSize(), product_param.LocalSize()); | 
 |   EXPECT_TRUE(product_param.ComputeJacobian(&x[0], jacobian.data())); | 
 |   int x_cursor = 0; | 
 |   int delta_cursor = 0; | 
 |  | 
 |   Matrix jacobian1(param1->GlobalSize(), param1->LocalSize()); | 
 |   EXPECT_TRUE(param1->ComputeJacobian(&x[x_cursor], jacobian1.data())); | 
 |   jacobian.block( | 
 |       x_cursor, delta_cursor, param1->GlobalSize(), param1->LocalSize()) -= | 
 |       jacobian1; | 
 |   x_cursor += param1->GlobalSize(); | 
 |   delta_cursor += param1->LocalSize(); | 
 |  | 
 |   Matrix jacobian2(param2->GlobalSize(), param2->LocalSize()); | 
 |   EXPECT_TRUE(param2->ComputeJacobian(&x[x_cursor], jacobian2.data())); | 
 |   jacobian.block( | 
 |       x_cursor, delta_cursor, param2->GlobalSize(), param2->LocalSize()) -= | 
 |       jacobian2; | 
 |   x_cursor += param2->GlobalSize(); | 
 |   delta_cursor += param2->LocalSize(); | 
 |  | 
 |   Matrix jacobian3(param3->GlobalSize(), param3->LocalSize()); | 
 |   EXPECT_TRUE(param3->ComputeJacobian(&x[x_cursor], jacobian3.data())); | 
 |   jacobian.block( | 
 |       x_cursor, delta_cursor, param3->GlobalSize(), param3->LocalSize()) -= | 
 |       jacobian3; | 
 |   x_cursor += param3->GlobalSize(); | 
 |   delta_cursor += param3->LocalSize(); | 
 |  | 
 |   Matrix jacobian4(param4->GlobalSize(), param4->LocalSize()); | 
 |   EXPECT_TRUE(param4->ComputeJacobian(&x[x_cursor], jacobian4.data())); | 
 |   jacobian.block( | 
 |       x_cursor, delta_cursor, param4->GlobalSize(), param4->LocalSize()) -= | 
 |       jacobian4; | 
 |   x_cursor += param4->GlobalSize(); | 
 |   delta_cursor += param4->LocalSize(); | 
 |  | 
 |   EXPECT_NEAR(jacobian.norm(), 0.0, std::numeric_limits<double>::epsilon()); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |