|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2018 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Authors: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include <iostream> | 
|  | #include "Eigen/Dense" | 
|  | #include "benchmark/benchmark.h" | 
|  | #include "ceres/small_blas.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | // Benchmarking matrix-matrix multiply routines and optimizing memory | 
|  | // access requires that we make sure that they are not just sitting in | 
|  | // the cache. So, as the benchmarking routine iterates, we need to | 
|  | // multiply new/different matrice. Allocating/creating these objects | 
|  | // in the benchmarking loop is too heavy duty, so we create them | 
|  | // before hand and cycle through them in the benchmark. This class, | 
|  | // given the size of the matrices creates such objects for use in the | 
|  | // benchmark. | 
|  | class MatrixMatrixMultiplyData { | 
|  | public: | 
|  | MatrixMatrixMultiplyData( | 
|  | int a_rows, int a_cols, int b_rows, int b_cols, int c_rows, int c_cols) | 
|  | : num_elements_(1000), | 
|  | a_size_(a_rows * a_cols), | 
|  | b_size_(b_rows * b_cols), | 
|  | c_size_(c_rows * c_cols), | 
|  | a_(num_elements_ * a_size_, 1.00001), | 
|  | b_(num_elements_ * b_size_, 0.5), | 
|  | c_(num_elements_ * c_size_, -1.1) {} | 
|  |  | 
|  | int num_elements() const { return num_elements_; } | 
|  | double* GetA(int i) { return &a_[i * a_size_]; } | 
|  | double* GetB(int i) { return &b_[i * b_size_]; } | 
|  | double* GetC(int i) { return &c_[i * c_size_]; } | 
|  |  | 
|  | private: | 
|  | int num_elements_; | 
|  | int a_size_; | 
|  | int b_size_; | 
|  | int c_size_; | 
|  | std::vector<double> a_; | 
|  | std::vector<double> b_; | 
|  | std::vector<double> c_; | 
|  | }; | 
|  |  | 
|  | static void MatrixMatrixMultiplySizeArguments( | 
|  | benchmark::internal::Benchmark* benchmark) { | 
|  | const std::vector<int> b_rows = {1, 2, 3, 4, 6, 8}; | 
|  | const std::vector<int> b_cols = {1, 2, 3, 4, 8, 12, 15}; | 
|  | const std::vector<int> c_cols = b_cols; | 
|  | for (int i : b_rows) { | 
|  | for (int j : b_cols) { | 
|  | for (int k : c_cols) { | 
|  | benchmark->Args({i, j, k}); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void BM_MatrixMatrixMultiplyDynamic(benchmark::State& state) { | 
|  | const int i = state.range(0); | 
|  | const int j = state.range(1); | 
|  | const int k = state.range(2); | 
|  |  | 
|  | const int b_rows = i; | 
|  | const int b_cols = j; | 
|  | const int c_rows = b_cols; | 
|  | const int c_cols = k; | 
|  | const int a_rows = b_rows; | 
|  | const int a_cols = c_cols; | 
|  |  | 
|  | MatrixMatrixMultiplyData data(a_rows, a_cols, b_rows, b_cols, c_rows, c_cols); | 
|  | const int num_elements = data.num_elements(); | 
|  |  | 
|  | int iter = 0; | 
|  | for (auto _ : state) { | 
|  | // a += b * c | 
|  | MatrixMatrixMultiply | 
|  | <Eigen::Dynamic, Eigen::Dynamic,Eigen::Dynamic,Eigen::Dynamic, 1> | 
|  | (data.GetB(iter), b_rows, b_cols, | 
|  | data.GetC(iter), c_rows, c_cols, | 
|  | data.GetA(iter), 0, 0, a_rows, a_cols); | 
|  | iter = (iter + 1) % num_elements; | 
|  | } | 
|  | } | 
|  |  | 
|  | BENCHMARK(BM_MatrixMatrixMultiplyDynamic) | 
|  | ->Apply(MatrixMatrixMultiplySizeArguments); | 
|  |  | 
|  | static void MatrixTransposeMatrixMultiplySizeArguments( | 
|  | benchmark::internal::Benchmark* benchmark) { | 
|  | std::vector<int> b_rows = {1, 2, 3, 4, 6, 8}; | 
|  | std::vector<int> b_cols = {1, 2, 3, 4, 8, 12, 15}; | 
|  | std::vector<int> c_cols = b_rows; | 
|  | for (int i : b_rows) { | 
|  | for (int j : b_cols) { | 
|  | for (int k : c_cols) { | 
|  | benchmark->Args({i, j, k}); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void BM_MatrixTransposeMatrixMultiplyDynamic(benchmark::State& state) { | 
|  | const int i = state.range(0); | 
|  | const int j = state.range(1); | 
|  | const int k = state.range(2); | 
|  |  | 
|  | const int b_rows = i; | 
|  | const int b_cols = j; | 
|  | const int c_rows = b_rows; | 
|  | const int c_cols = k; | 
|  | const int a_rows = b_cols; | 
|  | const int a_cols = c_cols; | 
|  |  | 
|  | MatrixMatrixMultiplyData data(a_rows, a_cols, b_rows, b_cols, c_rows, c_cols); | 
|  | const int num_elements = data.num_elements(); | 
|  |  | 
|  | int iter = 0; | 
|  | for (auto _ : state) { | 
|  | // a += b' * c | 
|  | MatrixTransposeMatrixMultiply | 
|  | <Eigen::Dynamic,Eigen::Dynamic,Eigen::Dynamic,Eigen::Dynamic, 1> | 
|  | (data.GetB(iter), b_rows, b_cols, | 
|  | data.GetC(iter), c_rows, c_cols, | 
|  | data.GetA(iter), 0, 0, a_rows, a_cols); | 
|  | iter = (iter + 1) % num_elements; | 
|  | } | 
|  | } | 
|  |  | 
|  | BENCHMARK(BM_MatrixTransposeMatrixMultiplyDynamic) | 
|  | ->Apply(MatrixTransposeMatrixMultiplySizeArguments); | 
|  |  | 
|  | }  // internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | BENCHMARK_MAIN(); |