| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_PUBLIC_CUBIC_INTERPOLATION_H_ |
| #define CERES_PUBLIC_CUBIC_INTERPOLATION_H_ |
| |
| #include "ceres/internal/port.h" |
| #include "Eigen/Core" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| |
| // Given samples from a function sampled at four equally spaced points, |
| // |
| // p0 = f(-1) |
| // p1 = f(0) |
| // p2 = f(1) |
| // p3 = f(2) |
| // |
| // Evaluate the cubic Hermite spline (also known as the Catmull-Rom |
| // spline) at a point x that lies in the interval [0, 1]. |
| // |
| // This is also the interpolation kernel (for the case of a = 0.5) as |
| // proposed by R. Keys, in: |
| // |
| // "Cubic convolution interpolation for digital image processing". |
| // IEEE Transactions on Acoustics, Speech, and Signal Processing |
| // 29 (6): 1153–1160. |
| // |
| // For more details see |
| // |
| // http://en.wikipedia.org/wiki/Cubic_Hermite_spline |
| // http://en.wikipedia.org/wiki/Bicubic_interpolation |
| // |
| // f if not NULL will contain the interpolated function values. |
| // dfdx if not NULL will contain the interpolated derivative values. |
| template <int kDataDimension> |
| void CubicHermiteSpline(const Eigen::Matrix<double, kDataDimension, 1>& p0, |
| const Eigen::Matrix<double, kDataDimension, 1>& p1, |
| const Eigen::Matrix<double, kDataDimension, 1>& p2, |
| const Eigen::Matrix<double, kDataDimension, 1>& p3, |
| const double x, |
| double* f, |
| double* dfdx) { |
| DCHECK_GE(x, 0.0); |
| DCHECK_LE(x, 1.0); |
| typedef Eigen::Matrix<double, kDataDimension, 1> VType; |
| const VType a = 0.5 * (-p0 + 3.0 * p1 - 3.0 * p2 + p3); |
| const VType b = 0.5 * (2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3); |
| const VType c = 0.5 * (-p0 + p2); |
| const VType d = p1; |
| |
| // Use Horner's rule to evaluate the function value and its |
| // derivative. |
| |
| // f = ax^3 + bx^2 + cx + d |
| if (f != NULL) { |
| Eigen::Map<VType>(f, kDataDimension) = d + x * (c + x * (b + x * a)); |
| } |
| |
| // dfdx = 3ax^2 + 2bx + c |
| if (dfdx != NULL) { |
| Eigen::Map<VType>(dfdx, kDataDimension) = c + x * (2.0 * b + 3.0 * a * x); |
| } |
| } |
| |
| // Given as input a one dimensional array like object, which provides |
| // the following interface. |
| // |
| // struct Array { |
| // enum { DATA_DIMENSION = 2; }; |
| // void GetValue(int n, double* f) const; |
| // int NumValues() const; |
| // }; |
| // |
| // Where, GetValue gives us the value of a function f (possibly vector |
| // valued) on the integers: |
| // |
| // [0, ..., NumValues() - 1]. |
| // |
| // and the enum DATA_DIMENSION indicates the dimensionality of the |
| // function being interpolated. For example if you are interpolating a |
| // color image with three channels (Red, Green & Blue), then |
| // DATA_DIMENSION = 3. |
| // |
| // CubicInterpolator uses cubic Hermite splines to produce a smooth |
| // approximation to it that can be used to evaluate the f(x) and f'(x) |
| // at any real valued point in the interval: |
| // |
| // [0, NumValues() - 1]. |
| // |
| // For more details on cubic interpolation see |
| // |
| // http://en.wikipedia.org/wiki/Cubic_Hermite_spline |
| // |
| // Example usage: |
| // |
| // const double data[] = {1.0, 2.0, 5.0, 6.0}; |
| // Array1D<double, 1> array(x, 4); |
| // CubicInterpolator<Array1D<double, 1> > interpolator(array); |
| // double f, dfdx; |
| // CHECK(interpolator.Evaluator(1.5, &f, &dfdx)); |
| template<typename Array> |
| class CERES_EXPORT CubicInterpolator { |
| public: |
| explicit CubicInterpolator(const Array& array) |
| : array_(array) { |
| CHECK_GT(array.NumValues(), 1); |
| // The + casts the enum into an int before doing the |
| // comparison. It is needed to prevent |
| // "-Wunnamed-type-template-args" related errors. |
| CHECK_GE(+Array::DATA_DIMENSION, 1); |
| } |
| |
| bool Evaluate(double x, double* f, double* dfdx) const { |
| const int num_values = array_.NumValues(); |
| if (x < 0 || x > num_values - 1) { |
| LOG(ERROR) << "x = " << x |
| << " is not in the interval [0, " << num_values - 1 << "]."; |
| return false; |
| } |
| |
| int n = floor(x); |
| // Deal with the case where the point sits exactly on the right |
| // boundary. |
| if (n == num_values - 1) { |
| n -= 1; |
| } |
| |
| Eigen::Matrix<double, Array::DATA_DIMENSION, 1> p0, p1, p2, p3; |
| |
| // The point being evaluated is now expected to lie in the |
| // internal corresponding to p1 and p2. |
| array_.GetValue(n, p1.data()); |
| array_.GetValue(n + 1, p2.data()); |
| |
| // If we are at n >=1, the choose the element at n - 1, otherwise |
| // linearly interpolate from p1 and p2. |
| if (n > 0) { |
| array_.GetValue(n - 1, p0.data()); |
| } else { |
| p0 = 2 * p1 - p2; |
| } |
| |
| // If we are at n < num_values_ - 2, then choose the element n + |
| // 2, otherwise linearly interpolate from p1 and p2. |
| if (n < num_values - 2) { |
| array_.GetValue(n + 2, p3.data()); |
| } else { |
| p3 = 2 * p2 - p1; |
| } |
| |
| CubicHermiteSpline<Array::DATA_DIMENSION>(p0, p1, p2, p3, x - n, f, dfdx); |
| |
| return true; |
| } |
| |
| // The following two Evaluate overloads are needed for interfacing |
| // with automatic differentiation. The first is for when a scalar |
| // evaluation is done, and the second one is for when Jets are used. |
| bool Evaluate(const double& x, double* f) const { |
| return Evaluate(x, f, NULL); |
| } |
| |
| template<typename JetT> bool Evaluate(const JetT& x, JetT* f) const { |
| double fx[Array::DATA_DIMENSION], dfdx[Array::DATA_DIMENSION]; |
| if (!Evaluate(x.a, fx, dfdx)) { |
| return false; |
| } |
| |
| for (int i = 0; i < Array::DATA_DIMENSION; ++i) { |
| f[i].a = fx[i]; |
| f[i].v = dfdx[i] * x.v; |
| } |
| return true; |
| } |
| |
| int NumValues() const { return array_.NumValues(); } |
| |
| private: |
| const Array& array_; |
| }; |
| |
| // Given as input a two dimensional array like object, which provides |
| // the following interface: |
| // |
| // struct Array { |
| // enum { DATA_DIMENSION = 1 }; |
| // void GetValue(int row, int col, double* f) const; |
| // int NumRows() const; |
| // int NumCols() const; |
| // }; |
| // |
| // Where, GetValue gives us the value of a function f (possibly vector |
| // valued) on the integer grid: |
| // |
| // [0, ..., NumRows() - 1] x [0, ..., NumCols() - 1] |
| // |
| // and the enum DATA_DIMENSION indicates the dimensionality of the |
| // function being interpolated. For example if you are interpolating a |
| // color image with three channels (Red, Green & Blue), then |
| // DATA_DIMENSION = 3. |
| // |
| // BiCubicInterpolator uses the cubic convolution interpolation |
| // algorithm of R. Keys, to produce a smooth approximation to it that |
| // can be used to evaluate the f(r,c), df(r, c)/dr and df(r,c)/dc at |
| // any real valued point in the quad: |
| // |
| // [0, NumRows() - 1] x [0, NumCols() - 1] |
| // |
| // For more details on the algorithm used here see: |
| // |
| // "Cubic convolution interpolation for digital image processing". |
| // Robert G. Keys, IEEE Trans. on Acoustics, Speech, and Signal |
| // Processing 29 (6): 1153–1160, 1981. |
| // |
| // http://en.wikipedia.org/wiki/Cubic_Hermite_spline |
| // http://en.wikipedia.org/wiki/Bicubic_interpolation |
| // |
| // Example usage: |
| // |
| // const double data[] = {1.0, 3.0, -1.0, 4.0, |
| // 3.6, 2.1, 4.2, 2.0, |
| // 2.0, 1.0, 3.1, 5.2}; |
| // Array2D<double, 1> array(data, 3, 4); |
| // BiCubicInterpolator<Array2D<double, 1> > interpolator(array); |
| // double f, dfdr, dfdc; |
| // CHECK(interpolator.Evaluate(1.2, 2.5, &f, &dfdr, &dfdc)); |
| |
| template<typename Array> |
| class CERES_EXPORT BiCubicInterpolator { |
| public: |
| explicit BiCubicInterpolator(const Array& array) |
| : array_(array) { |
| CHECK_GT(array.NumRows(), 1); |
| CHECK_GT(array.NumCols(), 1); |
| // The + casts the enum into an int before doing the |
| // comparison. It is needed to prevent |
| // "-Wunnamed-type-template-args" related errors. |
| CHECK_GE(+Array::DATA_DIMENSION, 1); |
| } |
| |
| // Evaluate the interpolated function value and/or its |
| // derivative. Returns false if r or c is out of bounds. |
| bool Evaluate(double r, double c, |
| double* f, double* dfdr, double* dfdc) const { |
| const int num_rows = array_.NumRows(); |
| const int num_cols = array_.NumCols(); |
| |
| if (r < 0 || r > num_rows - 1 || c < 0 || c > num_cols - 1) { |
| LOG(ERROR) << "(r, c) = (" << r << ", " << c << ")" |
| << " is not in the square defined by [0, 0] " |
| << " and [" << num_rows - 1 << ", " << num_cols - 1 << "]"; |
| return false; |
| } |
| |
| int row = floor(r); |
| // Handle the case where the point sits exactly on the bottom |
| // boundary. |
| if (row == num_rows - 1) { |
| row -= 1; |
| } |
| |
| int col = floor(c); |
| // Handle the case where the point sits exactly on the right |
| // boundary. |
| if (col == num_cols - 1) { |
| col -= 1; |
| } |
| |
| // BiCubic interpolation requires 16 values around the point being |
| // evaluated. We will use pij, to indicate the elements of the |
| // 4x4 array of values. |
| // |
| // col |
| // p00 p01 p02 p03 |
| // row p10 p11 p12 p13 |
| // p20 p21 p22 p23 |
| // p30 p31 p32 p33 |
| // |
| // The point (r,c) being evaluated is assumed to lie in the square |
| // defined by p11, p12, p22 and p21. |
| |
| Eigen::Matrix<double, Array::DATA_DIMENSION, 1> p00, p01, p02, p03; |
| Eigen::Matrix<double, Array::DATA_DIMENSION, 1> p10, p11, p12, p13; |
| Eigen::Matrix<double, Array::DATA_DIMENSION, 1> p20, p21, p22, p23; |
| Eigen::Matrix<double, Array::DATA_DIMENSION, 1> p30, p31, p32, p33; |
| |
| array_.GetValue(row, col, p11.data()); |
| array_.GetValue(row, col + 1, p12.data()); |
| array_.GetValue(row + 1, col, p21.data()); |
| array_.GetValue(row + 1, col + 1, p22.data()); |
| |
| // If we are in rows >= 1, then choose the element from the row - 1, |
| // otherwise linearly interpolate from row and row + 1. |
| if (row > 0) { |
| array_.GetValue(row - 1, col, p01.data()); |
| array_.GetValue(row - 1, col + 1, p02.data()); |
| } else { |
| p01 = 2 * p11 - p21; |
| p02 = 2 * p12 - p22; |
| } |
| |
| // If we are in row < num_rows - 2, then pick the element from the |
| // row + 2, otherwise linearly interpolate from row and row + 1. |
| if (row < num_rows - 2) { |
| array_.GetValue(row + 2, col, p31.data()); |
| array_.GetValue(row + 2, col + 1, p32.data()); |
| } else { |
| p31 = 2 * p21 - p11; |
| p32 = 2 * p22 - p12; |
| } |
| |
| // Same logic as above, applies to the columns instead of rows. |
| if (col > 0) { |
| array_.GetValue(row, col - 1, p10.data()); |
| array_.GetValue(row + 1, col - 1, p20.data()); |
| } else { |
| p10 = 2 * p11 - p12; |
| p20 = 2 * p21 - p22; |
| } |
| |
| if (col < num_cols - 2) { |
| array_.GetValue(row, col + 2, p13.data()); |
| array_.GetValue(row + 1, col + 2, p23.data()); |
| } else { |
| p13 = 2 * p12 - p11; |
| p23 = 2 * p22 - p21; |
| } |
| |
| // The four corners of the block require a bit more care. Let us |
| // consider the evaluation of p00, the other three corners follow |
| // in the same manner. |
| // |
| // There are four cases in which we need to evaluate p00. |
| // |
| // row > 0, col > 0 : v(row, col) |
| // row = 0, col > 0 : Interpolate p10 & p20 |
| // row > 0, col = 0 : Interpolate p01 & p02 |
| // row = 0, col = 0 : Interpolate p10 & p20, or p01 & p02. |
| if (row > 0) { |
| if (col > 0) { |
| array_.GetValue(row - 1, col - 1, p00.data()); |
| } else { |
| p00 = 2 * p01 - p02; |
| } |
| |
| if (col < num_cols - 2) { |
| array_.GetValue(row - 1, col + 2, p03.data()); |
| } else { |
| p03 = 2 * p02 - p01; |
| } |
| } else { |
| p00 = 2 * p10 - p20; |
| p03 = 2 * p13 - p23; |
| } |
| |
| if (row < num_rows - 2) { |
| if (col > 0) { |
| array_.GetValue(row + 2, col - 1, p30.data()); |
| } else { |
| p30 = 2 * p31 - p32; |
| } |
| |
| if (col < num_cols - 2) { |
| array_.GetValue(row + 2, col + 2, p33.data()); |
| } else { |
| p33 = 2 * p32 - p31; |
| } |
| } else { |
| p30 = 2 * p20 - p10; |
| p33 = 2 * p23 - p13; |
| } |
| |
| // Interpolate along each of the four rows, evaluating the function |
| // value and the horizontal derivative in each row. |
| Eigen::Matrix<double, Array::DATA_DIMENSION, 1> f0, f1, f2, f3; |
| Eigen::Matrix<double, Array::DATA_DIMENSION, 1> df0dc, df1dc, df2dc, df3dc; |
| |
| CubicHermiteSpline<Array::DATA_DIMENSION>(p00, p01, p02, p03, c - col, |
| f0.data(), df0dc.data()); |
| CubicHermiteSpline<Array::DATA_DIMENSION>(p10, p11, p12, p13, c - col, |
| f1.data(), df1dc.data()); |
| CubicHermiteSpline<Array::DATA_DIMENSION>(p20, p21, p22, p23, c - col, |
| f2.data(), df2dc.data()); |
| CubicHermiteSpline<Array::DATA_DIMENSION>(p30, p31, p32, p33, c - col, |
| f3.data(), df3dc.data()); |
| |
| // Interpolate vertically the interpolated value from each row and |
| // compute the derivative along the columns. |
| CubicHermiteSpline<Array::DATA_DIMENSION>(f0, f1, f2, f3, r - row, f, dfdr); |
| if (dfdc != NULL) { |
| // Interpolate vertically the derivative along the columns. |
| CubicHermiteSpline<Array::DATA_DIMENSION>(df0dc, df1dc, df2dc, df3dc, |
| r - row, dfdc, NULL); |
| } |
| |
| return true; |
| } |
| |
| // The following two Evaluate overloads are needed for interfacing |
| // with automatic differentiation. The first is for when a scalar |
| // evaluation is done, and the second one is for when Jets are used. |
| bool Evaluate(const double& r, const double& c, double* f) const { |
| return Evaluate(r, c, f, NULL, NULL); |
| } |
| |
| template<typename JetT> bool Evaluate(const JetT& r, |
| const JetT& c, |
| JetT* f) const { |
| double frc[Array::DATA_DIMENSION]; |
| double dfdr[Array::DATA_DIMENSION]; |
| double dfdc[Array::DATA_DIMENSION]; |
| if (!Evaluate(r.a, c.a, frc, dfdr, dfdc)) { |
| return false; |
| } |
| |
| for (int i = 0; i < Array::DATA_DIMENSION; ++i) { |
| f[i].a = frc[i]; |
| f[i].v = dfdr[i] * r.v + dfdc[i] * c.v; |
| } |
| |
| return true; |
| } |
| |
| int NumRows() const { return array_.NumRows(); } |
| int NumCols() const { return array_.NumCols(); } |
| |
| private: |
| const Array& array_; |
| }; |
| |
| // An object that implements the one dimensional array like object |
| // needed by the CubicInterpolator where the source of the function |
| // values is an array of type T. |
| // |
| // The function being provided can be vector valued, in which case |
| // kDataDimension > 1. The dimensional slices of the function maybe |
| // interleaved, or they maybe stacked, i.e, if the function has |
| // kDataDimension = 2, if kInterleaved = true, then it is stored as |
| // |
| // f01, f02, f11, f12 .... |
| // |
| // and if kInterleaved = false, then it is stored as |
| // |
| // f01, f11, .. fn1, f02, f12, .. , fn2 |
| template <typename T, int kDataDimension = 1, bool kInterleaved = true> |
| struct Array1D { |
| enum { DATA_DIMENSION = kDataDimension }; |
| |
| Array1D(const T* data, const int num_values) |
| : data_(data), num_values_(num_values) { |
| } |
| |
| void GetValue(const int n, double* f) const { |
| DCHECK_GE(n, 0); |
| DCHECK_LT(n, num_values_); |
| |
| for (int i = 0; i < kDataDimension; ++i) { |
| if (kInterleaved) { |
| f[i] = static_cast<double>(data_[kDataDimension * n + i]); |
| } else { |
| f[i] = static_cast<double>(data_[i * num_values_ + n]); |
| } |
| } |
| } |
| |
| int NumValues() const { return num_values_; } |
| |
| private: |
| const T* data_; |
| const int num_values_; |
| }; |
| |
| // An object that implements the two dimensional array like object |
| // needed by the BiCubicInterpolator where the source of the function |
| // values is an array of type T. |
| // |
| // The function being provided can be vector valued, in which case |
| // kDataDimension > 1. The data maybe stored in row or column major |
| // format and the various dimensional slices of the function maybe |
| // interleaved, or they maybe stacked, i.e, if the function has |
| // kDataDimension = 2, is stored in row-major format and if |
| // kInterleaved = true, then it is stored as |
| // |
| // f001, f002, f011, f012, ... |
| // |
| // A commonly occuring example are color images (RGB) where the three |
| // channels are stored interleaved. |
| // |
| // If kInterleaved = false, then it is stored as |
| // |
| // f001, f011, ..., fnm1, f002, f012, ... |
| template <typename T, |
| int kDataDimension = 1, |
| bool kRowMajor = true, |
| bool kInterleaved = true> |
| struct Array2D { |
| enum { DATA_DIMENSION = kDataDimension }; |
| |
| Array2D(const T* data, const int num_rows, const int num_cols) |
| : data_(data), num_rows_(num_rows), num_cols_(num_cols) { |
| CHECK_GE(kDataDimension, 1); |
| } |
| |
| void GetValue(const int r, const int c, double* f) const { |
| DCHECK_GE(r, 0); |
| DCHECK_LT(r, num_rows_); |
| DCHECK_GE(c, 0); |
| DCHECK_LT(c, num_cols_); |
| |
| const int n = (kRowMajor) ? num_cols_ * r + c : num_rows_ * c + r; |
| for (int i = 0; i < kDataDimension; ++i) { |
| if (kInterleaved) { |
| f[i] = static_cast<double>(data_[kDataDimension * n + i]); |
| } else { |
| f[i] = static_cast<double>(data_[i * (num_rows_ * num_cols_) + n]); |
| } |
| } |
| } |
| |
| int NumRows() const { return num_rows_; } |
| int NumCols() const { return num_cols_; } |
| |
| private: |
| const T* data_; |
| const int num_rows_; |
| const int num_cols_; |
| }; |
| |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_CUBIC_INTERPOLATOR_H_ |