| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // When an iteration callback is specified, Ceres calls the callback |
| // after each minimizer step (if the minimizer has not converged) and |
| // passes it an IterationSummary object, defined below. |
| |
| #ifndef CERES_PUBLIC_ITERATION_CALLBACK_H_ |
| #define CERES_PUBLIC_ITERATION_CALLBACK_H_ |
| |
| #include "ceres/types.h" |
| #include "ceres/internal/disable_warnings.h" |
| |
| namespace ceres { |
| |
| // This struct describes the state of the optimizer after each |
| // iteration of the minimization. |
| struct CERES_EXPORT IterationSummary { |
| IterationSummary() |
| : iteration(0), |
| step_is_valid(false), |
| step_is_nonmonotonic(false), |
| step_is_successful(false), |
| cost(0.0), |
| cost_change(0.0), |
| gradient_max_norm(0.0), |
| gradient_norm(0.0), |
| step_norm(0.0), |
| eta(0.0), |
| step_size(0.0), |
| line_search_function_evaluations(0), |
| line_search_gradient_evaluations(0), |
| line_search_iterations(0), |
| linear_solver_iterations(0), |
| iteration_time_in_seconds(0.0), |
| step_solver_time_in_seconds(0.0), |
| cumulative_time_in_seconds(0.0) {} |
| |
| // Current iteration number. |
| int32 iteration; |
| |
| // Step was numerically valid, i.e., all values are finite and the |
| // step reduces the value of the linearized model. |
| // |
| // Note: step_is_valid is false when iteration = 0. |
| bool step_is_valid; |
| |
| // Step did not reduce the value of the objective function |
| // sufficiently, but it was accepted because of the relaxed |
| // acceptance criterion used by the non-monotonic trust region |
| // algorithm. |
| // |
| // Note: step_is_nonmonotonic is false when iteration = 0; |
| bool step_is_nonmonotonic; |
| |
| // Whether or not the minimizer accepted this step or not. If the |
| // ordinary trust region algorithm is used, this means that the |
| // relative reduction in the objective function value was greater |
| // than Solver::Options::min_relative_decrease. However, if the |
| // non-monotonic trust region algorithm is used |
| // (Solver::Options:use_nonmonotonic_steps = true), then even if the |
| // relative decrease is not sufficient, the algorithm may accept the |
| // step and the step is declared successful. |
| // |
| // Note: step_is_successful is false when iteration = 0. |
| bool step_is_successful; |
| |
| // Value of the objective function. |
| double cost; |
| |
| // Change in the value of the objective function in this |
| // iteration. This can be positive or negative. |
| double cost_change; |
| |
| // Infinity norm of the gradient vector. |
| double gradient_max_norm; |
| |
| // 2-norm of the gradient vector. |
| double gradient_norm; |
| |
| // 2-norm of the size of the step computed by the optimization |
| // algorithm. |
| double step_norm; |
| |
| // For trust region algorithms, the ratio of the actual change in |
| // cost and the change in the cost of the linearized approximation. |
| double relative_decrease; |
| |
| // Size of the trust region at the end of the current iteration. For |
| // the Levenberg-Marquardt algorithm, the regularization parameter |
| // mu = 1.0 / trust_region_radius. |
| double trust_region_radius; |
| |
| // For the inexact step Levenberg-Marquardt algorithm, this is the |
| // relative accuracy with which the Newton(LM) step is solved. This |
| // number affects only the iterative solvers capable of solving |
| // linear systems inexactly. Factorization-based exact solvers |
| // ignore it. |
| double eta; |
| |
| // Step sized computed by the line search algorithm. |
| double step_size; |
| |
| // Number of function value evaluations used by the line search algorithm. |
| int line_search_function_evaluations; |
| |
| // Number of function gradient evaluations used by the line search algorithm. |
| int line_search_gradient_evaluations; |
| |
| // Number of iterations taken by the line search algorithm. |
| int line_search_iterations; |
| |
| // Number of iterations taken by the linear solver to solve for the |
| // Newton step. |
| int linear_solver_iterations; |
| |
| // All times reported below are wall times. |
| |
| // Time (in seconds) spent inside the minimizer loop in the current |
| // iteration. |
| double iteration_time_in_seconds; |
| |
| // Time (in seconds) spent inside the trust region step solver. |
| double step_solver_time_in_seconds; |
| |
| // Time (in seconds) since the user called Solve(). |
| double cumulative_time_in_seconds; |
| }; |
| |
| // Interface for specifying callbacks that are executed at the end of |
| // each iteration of the Minimizer. The solver uses the return value |
| // of operator() to decide whether to continue solving or to |
| // terminate. The user can return three values. |
| // |
| // SOLVER_ABORT indicates that the callback detected an abnormal |
| // situation. The solver returns without updating the parameter blocks |
| // (unless Solver::Options::update_state_every_iteration is set |
| // true). Solver returns with Solver::Summary::termination_type set to |
| // USER_ABORT. |
| // |
| // SOLVER_TERMINATE_SUCCESSFULLY indicates that there is no need to |
| // optimize anymore (some user specified termination criterion has |
| // been met). Solver returns with Solver::Summary::termination_type |
| // set to USER_SUCCESS. |
| // |
| // SOLVER_CONTINUE indicates that the solver should continue |
| // optimizing. |
| // |
| // For example, the following Callback is used internally by Ceres to |
| // log the progress of the optimization. |
| // |
| // Callback for logging the state of the minimizer to STDERR or STDOUT |
| // depending on the user's preferences and logging level. |
| // |
| // class LoggingCallback : public IterationCallback { |
| // public: |
| // explicit LoggingCallback(bool log_to_stdout) |
| // : log_to_stdout_(log_to_stdout) {} |
| // |
| // ~LoggingCallback() {} |
| // |
| // CallbackReturnType operator()(const IterationSummary& summary) { |
| // const char* kReportRowFormat = |
| // "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e " |
| // "rho:% 3.2e mu:% 3.2e eta:% 3.2e li:% 3d"; |
| // string output = StringPrintf(kReportRowFormat, |
| // summary.iteration, |
| // summary.cost, |
| // summary.cost_change, |
| // summary.gradient_max_norm, |
| // summary.step_norm, |
| // summary.relative_decrease, |
| // summary.trust_region_radius, |
| // summary.eta, |
| // summary.linear_solver_iterations); |
| // if (log_to_stdout_) { |
| // cout << output << endl; |
| // } else { |
| // VLOG(1) << output; |
| // } |
| // return SOLVER_CONTINUE; |
| // } |
| // |
| // private: |
| // const bool log_to_stdout_; |
| // }; |
| // |
| class CERES_EXPORT IterationCallback { |
| public: |
| virtual ~IterationCallback() {} |
| virtual CallbackReturnType operator()(const IterationSummary& summary) = 0; |
| }; |
| |
| } // namespace ceres |
| |
| #include "ceres/internal/reenable_warnings.h" |
| |
| #endif // CERES_PUBLIC_ITERATION_CALLBACK_H_ |